In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity maps ( Thomson, West, et al. 2002; Binzegger et al. 2004) have been used in various computational studies, prominent features of the simulated activity such as the spontaneous firing rates do not match the experimental findings. Here, we analyze the properties of these maps to compile an integrated connectivity map, which additionally incorporates insights on the specific selection of target types. Based on this integrated map, we build a full-scale spiking network model of the local cortical microcircuit. The simulated spontaneous activity is asynchronous irregular and cell-type specific firing rates are in agreement with in vivo recordings in awake animals, including the low rate of layer 2/3 excitatory cells. The interplay of excitation and inhibition captures the flow of activity through cortical layers after transient thalamic stimulation. In conclusion, the integration of a large body of the available connectivity data enables us to expose the dynamical consequences of the cortical microcircuitry.
The local field potential (LFP) reflects activity of many neurons in the vicinity of the recording electrode and is therefore useful for studying local network dynamics. Much of the nature of the LFP is, however, still unknown. There are, for instance, contradicting reports on the spatial extent of the region generating the LFP. Here, we use a detailed biophysical modeling approach to investigate the size of the contributing region by simulating the LFP from a large number of neurons around the electrode. We find that the size of the generating region depends on the neuron morphology, the synapse distribution, and the correlation in synaptic activity. For uncorrelated activity, the LFP represents cells in a small region (within a radius of a few hundred micrometers). If the LFP contributions from different cells are correlated, the size of the generating region is determined by the spatial extent of the correlated activity.
In this article, we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.