The blockchain is a ledger of accounts and transactions that are written and stored by all participants. It promises a reliable source of truth about the state of farms, inventories and contracts in agriculture, where the collection of such information is often incredibly costly. The blockchain technology can track the provenance of food and thus helps create trustworthy food supply chains and build trust between producers and consumers. As a trusted way of storing data, it facilitates the use of data-driven technologies to make farming smarter. In addition, jointly used with smart contracts, it allows timely payments between stakeholders that can be triggered by data changes appearing in the blockchain This article examines the applications of blockchain technology in food supply chains, agricultural insurance, smart farming, transactions of agricultural products for both theoretical and practical perspectives. We also discuss the challenges of recording transactions made by smallholder farmers and creating the ecosystem for utilizing the blockchain technology in the food and agriculture sector.
Adverse weather events occurring at sensitive stages of plant growth can cause substantial yield losses in crop production. Agricultural insurance schemes can help farmers to protect their income against downside risks. While traditional indemnity-based insurance schemes need governmental support to overcome market failure caused by asymmetric information problems, weather index–based insurance (WII) products represent a promising alternative. In WII the payout depends on a weather index serving as a proxy for yield losses. However, the nonperfect correlation of yield losses and the underlying index, the so-called basis risk, constitutes a key challenge for these products. This study aims to contribute to the reduction of basis risk and thus to the addition of risk-reducing properties of WII. More specifically, the study tests whether grid data for precipitation (vs weather station data) and phenological observations (vs fixed time windows for index determination) that are provided by public institutions can reduce spatial and temporal basis risk and thus improve the performance of WII. An empirical example of wheat production in Germany is used. No differences were found between using gridded and weather station precipitation, whereas the use of phenological observations significantly increases expected utility. However, even if grid data do not yet reduce basis risk, they enable overcoming several disadvantages of using station data and are thus useful for WII applications. Based on the study’s findings and the availability of these data in other countries, a massive potential for improving WII can be concluded.
Weather risks are an essential and increasingly important driver of agricultural income volatility. Agricultural insurances contribute to support farmers to cope with these risks. Among these insurances, weather index insurances (WII) are an innovative tool to cope with climatic risks in agriculture. Using WII, farmers receive an indemnification not based on actual yield reductions but are compensated based on a measured weather index, such as rainfall at a nearby weather station. The discrepancy between experienced losses and actual indemnification, basis risk, is a key challenge. In particular, specifications of WII used so far do not capture critical plant growth phases adequately. Here, we contribute to reduce basis risk by proposing novel procedures how occurrence dates and shifts of growth phases over time and space can be considered and test for their risk reducing potential. Our empirical example addresses drought risks in the critical growth phase around the anthesis stage in winter wheat production in Germany. We find spatially explicit, public and open databases of phenology reports to contribute to reduce basis risk and thus improve the attractiveness of WII. In contrast, we find growth stage modelling based on growing degree days (thermal time) not to result in significant improvements.
This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.