We present a novel numerical scheme to approximate the solution map s ↦ u(s) := 𝓛−s f to fractional PDEs involving elliptic operators. Reinterpreting 𝓛−s as an interpolation operator allows us to write u(s) as an integral including solutions to a parametrized family of local PDEs. We propose a reduced basis strategy on top of a finite element method to approximate its integrand. Unlike prior works, we deduce the choice of snapshots for the reduced basis procedure analytically. The integral is interpreted in a spectral setting to evaluate the surrogate directly. Its computation boils down to a matrix approximation L of the operator whose inverse is projected to the s-independent reduced space, where explicit diagonalization is feasible. Exponential convergence rates are proven rigorously. A second algorithm is presented to avoid inversion of L. Instead, we directly project the matrix to the subspace, where its negative fractional power is evaluated. A numerical comparison with the predecessor highlights its competitive performance.
We establish an equivalence between two classes of methods for solving fractional diffusion problems, namely, Reduced Basis Methods (RBM) and Rational Krylov Methods (RKM). In particular, we demonstrate that several recently proposed RBMs for fractional diffusion can be interpreted as RKMs. This changed point of view allows us to give convergence proofs for some methods where none were previously available. We also propose a new RKM for fractional diffusion problems with poles chosen using the best rational approximation of the function 𝑧 −𝑠 with 𝑧 ranging over the spectral interval of the spatial discretization matrix. We prove convergence rates for this method and demonstrate numerically that it is competitive with or superior to many methods from the reduced basis, rational Krylov, and direct rational approximation classes. We provide numerical tests for some elliptic fractional diffusion model problems.
We propose and analyze new numerical methods to evaluate fractional norms and apply fractional powers of elliptic operators. By means of a reduced basis method, we project to a small dimensional subspace where explicit diagonalization via the eigensystem is feasible. The method relies on several independent evaluations of (I −t 2 i ∆) −1 f , which can be computed in parallel. We prove exponential convergence rates for the optimal choice of sampling points t i , provided by the so-called Zolotarëv points. Numerical experiments confirm the analysis and demonstrate the efficiency of our algorithm.
We propose and analyze new numerical methods to evaluate fractional norms and apply fractional powers of elliptic operators. By means of a reduced basis method, we project to a small dimensional subspace where explicit diagonalization via the eigensystem is feasible. The method relies on several independent evaluations of $$({{\,\mathrm{I}\,}}-t_i^2\Delta )^{-1}f$$ ( I - t i 2 Δ ) - 1 f , which can be computed in parallel. We prove exponential convergence rates for the optimal choice of sampling points $$t_i$$ t i , provided by the so-called Zolotarëv points. Numerical experiments confirm the analysis and demonstrate the efficiency of our algorithm.
We present a unified framework to efficiently approximate solutions to fractional diffusion problems of stationary and parabolic type. After discretization, we can take the point of view that the solution is obtained by a matrix-vector product of the form f τ (L)b, where L is the discretization matrix of the spatial operator, b a prescribed vector, and f τ a parametric function, such as the fractional power or the Mittag-Leffler function. In the abstract framework of Stieltjes and complete Bernstein functions, to which the functions we are interested in belong to, we apply a rational Krylov method and prove uniform convergence when using poles based on Zolotarëv's minimal deviation problem. The latter are particularly suited for fractional diffusion as they allow for an efficient query of the map τ → f τ (L)b and do not degenerate as the fractional parameters approach zero.We also present a variety of both novel and existing pole selection strategies for which we develop a computable error certificate. Our numerical experiments comprise a detailed parameter study of space-time fractional diffusion problems and compare the performance of the poles with the ones predicted by our certificate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.