We explore the possibility of ultrafast, coherent all-optical magnetization switching in antiferromagnets by studying the action of the inverse Faraday effect in CrPt, an easy-plane antiferromagnet. Using a combination of density-functional theory and atomistic spin dynamics simulations, we show how a circularly polarized laser pulse can switch the order parameter of the antiferromagnet within a few hundred femtoseconds. This nonthermal switching takes place on an elliptical path, driven by the staggered magnetic moments induced by the inverse Faraday effect and leading to reliable switching between two perpendicular magnetic states.
Hematite is a canted antiferromagnetic insulator, promising for applications in spintronics. Here, we present ab initio calculations of the tensorial exchange interactions of hematite and use them to understand its magnetic properties by parameterizing a semiclassical Heisenberg spin model. Using atomistic spin dynamics simulations, we calculate the equilibrium properties and phase transitions of hematite, most notably the Morin transition. The computed isotropic and Dzyaloshinskii-Moriya interactions result in a Néel temperature and weak ferromagnetic canting angle that are in good agreement with experimental measurements. Our simulations show how dipoledipole interactions act in a delicate balance with first and higher-order on-site anisotropies to determine the material's magnetic phase. Comparison with spin-Hall magnetoresistance measurements on a hematite singlecrystal reveals deviations of the critical behavior at low temperatures. Based on a mean-field model, we argue that these differences result from the quantum nature of the fluctuations that drive the phase transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.