We introduce KPI-EDGAR, a novel dataset for Joint Named Entity Recognition and Relation Extraction building on financial reports uploaded to the Electronic Data Gathering, Analysis, and Retrieval (EDGAR) system, where the main objective is to extract Key Performance Indicators (KPIs) from financial documents and link them to their numerical values and other attributes. We further provide four accompanying baselines for benchmarking potential future research. Additionally, we propose a new way of measuring the success of said extraction process by incorporating a word-level weighting scheme into the conventional F1 score to better model the inherently fuzzy borders of the entity pairs of a relation in this domain.
A company's financial documents use tables along with text to organize the data containing key performance indicators (KPIs) (such as profit and loss) and a financial quantity linked to them. The KPI’s linked quantity in a table might not be equal to the similarly described KPI's quantity in a text. Auditors take substantial time to manually audit these financial mistakes and this process is called consistency checking. As compared to existing work, this paper attempts to automate this task with the help of transformer-based models. Furthermore, for consistency checking it is essential for the table's KPIs embeddings to encode the semantic knowledge of the KPIs and the structural knowledge of the table. Therefore, this paper proposes a pipeline that uses a tabular model to get the table's KPIs embeddings. The pipeline takes input table and text KPIs, generates their embeddings, and then checks whether these KPIs are identical. The pipeline is evaluated on the financial documents in the German language and a comparative analysis of the cell embeddings' quality from the three tabular models is also presented. From the evaluation results, the experiment that used the English-translated text and table KPIs and Tabbie model to generate table KPIs’ embeddings achieved an accuracy of 72.81% on the consistency checking task, outperforming the benchmark, and other tabular models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.