The development of advanced autonomous driving applications is hindered by the complex temporal structure of sensory data, as well as by the limited computational and energy resources of their on-board systems. Currently, neuromorphic engineering is a rapidly growing field that aims to design information processing systems similar to the human brain by leveraging novel algorithms based on spiking neural networks (SNNs). These systems are well-suited to recognize temporal patterns in data while maintaining a low energy consumption and offering highly parallel architectures for fast computation. However, the lack of effective algorithms for SNNs impedes their wide usage in mobile robot applications. This paper addresses the problem of radar signal processing by introducing a novel SNN that substitutes the discrete Fourier transform and constant false-alarm rate algorithm for raw radar data, where the weights and architecture of the SNN are derived from the original algorithms. We demonstrate that our proposed SNN can achieve competitive results compared to that of the original algorithms in simulated driving scenarios while retaining its spike-based nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.