In this work we present new second order semi-discrete central schemes for systems of hyperbolic conservation laws on curvilinear grids. Our methods generalise the two-dimensional central-upwind schemes developed by Kurganov and Tadmor [1]. In these schemes we account for area and volume changes in the numerical flux functions due to the non-cartesian geometries. In case of vectorial conservation laws we introduce a general prescription of the geometrical source terms valid for various orthogonal curvilinear coordinate systems. The methods are applied to the two-dimensional Euler equations of inviscid gas dynamics with and without angular momentum transport. In the latter case we introduce a new test problem to examine the detailed conservation of specific angular momentum.
Context. Whether or not a self-gravitating accretion disk fragments is still an open issue. There are many different physical and numerical explanations for fragmentation, but simulations often show a non-convergent behavior for ever better resolution. Aims. We aim to investigate the influence of different numerical limiters in Godunov type schemes on the fragmentation boundary in self-gravitating disks. Methods. We have compared the linear and non-linear outcomes in two-dimensional shearingsheet simulations using the VANLEER and the SUPERBEE limiter. Results. We show that choosing inappropriate limiting functions to handle shock-capturing in Godunov type schemes can lead to an overestimation of the surface density in regions with shallow density gradients. The effect amplifies itself on timescales comparable to the dynamical timescale even at high resolutions. This is exactly the environment in which clumps are expected to form. The effect is present without, but scaled up by, self-gravity and also does not depend on cooling. Moreover it can be backtracked to a well known effect called oversteepening. If the effect is also observed in the linear case, the fragmentation limit is shifted to larger values of the critical cooling timescale.
Context. A substantial fraction of protoplanetary disks form around stellar binaries. The binary system generates a time-dependent non-axisymmetric gravitational potential, inducing strong tidal forces on the circumbinary disk. This leads to a change in basic physical properties of the circumbinary disk, which should in turn result in unique structures that are potentially observable with the current generation of instruments. Aims. The goal of this study is to identify these characteristic structures, constrain the physical conditions that cause them, and evaluate the feasibility of observing them in circumbinary disks. Methods. To achieve this, first we perform 2D hydrodynamic simulations. The resulting density distributions are post-processed with a 3D radiative transfer code to generate re-emission and scattered light maps. Based on these distributions, we study the influence of various parameters, such as the mass of the stellar components, mass of the disk, and binary separation on observable features in circumbinary disks. Results. We find that the Atacama Large (sub-)Millimetre Array (ALMA) as well as the European Extremely Large Telescope (E-ELT) are capable of tracing asymmetries in the inner region of circumbinary disks, which are affected most by the binary-disk interaction. Observations at submillimetre/millimetre wavelengths allow the detection of the density waves at the inner rim of the disk and inner cavity. With the E-ELT one can partially resolve the innermost parts of the disk in the infrared wavelength range, including the disk's rim, accretion arms, and potentially the expected circumstellar disks around each of the binary components.
Due to the non-axisymmetric potential of the central bar, barred spiral galaxies form, in addition to their characteristic arms and bar, a variety of structures within the thin gas disk, like nuclear rings, inner spirals and dust-lanes. In this first of two papers, we present a method to accurately simulate the gas flow within the galactic plane in the 2D finite volume software package FOSITE, which solves the transport equations for mass, momentum and energy, and apply it to this class of objects. To this extent, we introduced a new transport scheme for angular momentum and a very efficient pseudo-spectral Poisson solver. Moreover, we provide a simple and generally applicable method of how to take care of gravity in the energy equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.