Abstract. Current large-scale IPv6 studies mostly rely on non-public datasets, as most public datasets are domain specific. For instance, traceroute-based datasets are biased toward network equipment. In this paper, we present a new methodology to collect IPv6 address datasets that does not require access to restricted network vantage points. We collect a new dataset spanning more than 5.8 million IPv6 addresses by exploiting DNS' denial of existence semantics (NXDOMAIN). This paper documents our efforts in obtaining new datasets of allocated IPv6 addresses, so others can avoid the obstacles we encountered.
Virtual switches are a crucial component of SDN-based cloud systems, enabling the interconnection of virtual machines in a flexible and "software-defined" manner. This paper raises the alarm on the security implications of virtual switches. In particular, we show that virtual switches not only increase the attack surface of the cloud, but virtual switch vulnerabilities can also lead to attacks of much higher impact compared to traditional switches. We present a systematic security analysis and identify four design decisions which introduce vulnerabilities. Our findings motivate us to revisit existing threat models for SDNbased cloud setups, and introduce a new attacker model for SDN-based cloud systems using virtual switches.
Infrastructure-as-a-Service (IaaS), and more generally the "cloud," like Amazon Web Services (AWS) or Microsoft Azure, have changed the landscape of system operations on the Internet. Their elasticity allows operators to rapidly allocate and use resources as needed, from virtual machines, to storage, to bandwidth, and even to IP addresses, which is what made them popular and spurred innovation. In this paper, we show that the dynamic component paired with recent developments in trust-based ecosystems (e.g., SSL certificates) creates so far unknown attack vectors. Specifically, we discover a substantial number of stale DNS records that point to available IP addresses in clouds, yet, are still actively attempted to be accessed. Often, these records belong to discontinued services that were previously hosted in the cloud. We demonstrate that it is practical, and time and cost efficient for attackers to allocate IP addresses to which stale DNS records point. Considering the ubiquity of domain validation in trust ecosystems, like SSL certificates, an attacker can impersonate the service using a valid certificate trusted by all major operating systems and browsers. The attacker can then also exploit residual trust in the domain name for phishing, receiving and sending emails, or possibly distribute code to clients that load remote code from the domain (e.g., loading of native code by mobile apps, or JavaScript libraries by websites). Even worse, an aggressive attacker could execute the attack in less than 70 seconds, well below common time-to-live (TTL) for DNS records. In turn, it means an attacker could exploit normal service migrations in the cloud to obtain a valid SSL certificate for domains owned and managed by others, and, worse, that she might not actually be bound by DNS records being (temporarily) stale, but that she can exploit caching instead. We introduce a new authentication method for trust-based domain validation that mitigates staleness issues without incurring additional certificate requester effort by incorporating existing trust of a name into the validation process. Furthermore, we provide recommendations for domain name owners and cloud operators to reduce their and their clients' exposure to DNS staleness issues and the resulting domain takeover attacks.
Abstract. Fuzz testing is an effective and scalable technique to perform software security assessments. Yet, contemporary fuzzers fall short of thoroughly testing applications with a high degree of control-flow diversity, such as firewalls and network packet analyzers. In this paper, we demonstrate how static program analysis can guide fuzzing by augmenting existing program models maintained by the fuzzer. Based on the insight that code patterns reflect the data format of inputs processed by a program, we automatically construct an input dictionary by statically analyzing program control and data flow. Our analysis is performed before fuzzing commences, and the input dictionary is supplied to an off-the-shelf fuzzer to influence input generation. Evaluations show that our technique not only increases test coverage by 10-15% over baseline fuzzers such as afl but also reduces the time required to expose vulnerabilities by up to an order of magnitude. As a case study, we have evaluated our approach on two classes of network applications: nDPI, a deep packet inspection library, and tcpdump, a network packet analyzer. Using our approach, we have uncovered 15 zero-day vulnerabilities in the evaluated software that were not found by stand-alone fuzzers. Our work not only provides a practical method to conduct security evaluations more effectively but also demonstrates that the synergy between program analysis and testing can be exploited for a better outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.