Background: Previous studies reported on a large (> 80%) compliance between the observed toxicity of pesticide mixtures and their toxicity as predicted by the concept of concentration addition (CA). The present study extents these findings to commercially sold and frequently applied pesticide mixtures by investigating whether the aquatic toxicity of 66 herbicidal and 53 fungicidal combination products, i.e., authorized plant protection products that contain two or more active substances, can reliably be predicted by CA. Results: In more than 50% of cases, the predicted and observed mixture toxicity deviated by less than factor 2. An indication for a synergistic interaction was only detected with regard to algal growth inhibition for mixtures of fungicides that inhibit different enzymes of ergosterol biosynthesis. The greatest degree of compliance between prediction and observation was found for the acute toxicity of fungicidal products towards Daphnia and fish, while the greatest degree of underestimation of product toxicity occurred for the acute toxicity of herbicidal products towards Daphnia and fish. Using the lowest available toxicity measures within taxonomic groups as the most conservative approach resulted in a bias towards overestimation of product toxicity, but did not eliminate cases of considerable underestimation of product toxicity.
Conclusions:The results suggest that the CA concept can be applied to predict the aquatic toxicity of commercial pesticide mixtures using the heterogeneous data typically available in a risk assessment context for a number of clearly identified combinations of test species and pesticide types with reasonably small uncertainty.
The application of screening assays such as the YES to complex mixtures should be accompanied by measures that safeguard against false negative results which may be caused by non-estrogenic but toxic confounders. Simultaneous assessments of estrogenicity and toxicity are generally advisable.
This position paper intends to stimulate a profound rethinking of contemporary agricultural practice. We criticise the current intensity of chemical plant protection in Germany as ecologically unsustainable and thus threatening the achievement of key targets of environmental protection and nature conservation policies. In the first part of the paper, we provide background information on the use of plant protection products (PPP) in German agriculture, the role of agricultural policy, European pesticide legislation, the principles of and framework for environmental risk assessment and risk management of PPP, as well as environmental effects of PPP. The second part is presented against the backdrop of the European “Sustainable Use Directive” (2009/128/EC). This directive requires that “Member States shall adopt National Action Plans to set up their quantitative objectives, targets, measures, and timetables to reduce risks and impacts of pesticide use on human health and the environment and to encourage the development and introduction of integrated pest management and of alternative approaches or techniques to reduce dependency on the use of pesticides.” Reflecting on the corresponding debate in Germany, we suggest the following five key principles for a sustainable use of PPP and provide recommendations for their implementation: (1) minimising use; (2) identifying, quantifying, and communicating risks; (3) optimising risk management; (4) compensating for unavoidable effects; (5) internalising external costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.