Using X-ray absorption techniques, we show that temperature-and light-induced spin crossover properties are conserved for a sub-monolayer of the [Fe(H 2 B(pz) 2 ) 2 (2,2'-bipy)] complex evaporated onto a Au(111) surface. For a significant fraction of the molecules, we see changes in the absorption at the L 2,3 edges that are consistent with those observed in bulk and thick film references. Assignment of these changes to spin crossover is further supported by multiplet calculations to simulate the x-ray absorption spectra. As others have observed in experiments on monolayer coverages, we find that many molecules in our submonolayer system remain pinned in one of the two spin states. Our results clearly demonstrate that temperature-and light-induced spin-crossover is possible for isolated molecules on surfaces, but that interactions with the surface may play a key role in determining when this can occur. TOC X-ray absorption techniques evidenced that temperature-and light-induced spin crossover properties were conserved for a sub-monolayer of the [Fe(H 2 B(pz) 2 ) 2 (2,2'-bipy)] complex evaporated on a Gold surface KEYWORDS: spin crossover,·UHV evaporation,·submonolayer,·X-ray absorption,·iron complexes 3 Spin Crossover (SCO) complexes are promising building blocks for spintronic 1 Using variable temperature X-ray absorption spectra, we examined a submonolayer coverage evaporated in situ under UHV conditions on Au(111), before and after irradiation with visible laser light. We compare these results to those obtained from two other samples: 1) a 5 single crystal finely scratched on gold foil, which we use as a spectroscopic bulk reference; and 2) a 300 nm thick film sublimedex situ on copper foil, to check the preservation of structure and properties of the complex. Experimental spectra were then compared to the ones obtained using multiplet calculations. 37-39The variation of the L 2,3 edge spectra for the bulk sample over the range of the thermal spin crossover (100-300 K) is reported in Figure 1a(see also Figure S1 in Supplementary Information Spectra measured on the thick film prepared ex situ are similar to the bulk, and show comparable temperature dependence (Figure 1b and Figure S1). Nevertheless, the thick film spectrum is slightly differentfrom the bulk compound: shoulders on the high-energy side (at 300 K) or at the low-energy side (at 100 K) of the L 3 absorption peak, are likely associated with a small fraction of decomposition product, which maybe caused by air exposure of this sample prepared ex situ.The analysis of the temperature-dependent spectra as weighted sums of the bulk spectra at 300 K and 100 K, chosen as representative of the HS and LS state respectively, allows for the extraction of the temperature dependence of the HS fraction (Table S2). For the thick film, the shoulder signals were found to be temperature independent, and thus do not affect the switching behavior. We extracted this spurious contribution ( Figures S3 and S4) and subtracted it from all spectra before evaluating...
Epitaxial silicene, which forms spontaneously on ZrB2(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. The realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility of silicene.
Using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM), we observe a new two-dimensional (2D) silicon crystal that is formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. The 2D growth of this material could allow for direct contacting to the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems. LETTER Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.