A piezoelectric fiber patch (PFP) is a transducer type that is suitable for guided-wave-based structural health monitoring (SHM) due to its light, thin, and flexible characteristics. In our previous work, a PFP-based transducer design for selective excitation of the zero-order shear horizontal wave mode (SH0) was introduced (shear horizontal PFP (SHPFP)). In this work, two modified SH0 wave PFP transducer designs are proposed: the rounded corner design and the dual design. The degree of improvement is determined by a numerical simulation and the dual design—the design with the most promise—is experimentally realized. Laser Vibrometry measured the generated wave field, confirming the results from the simulation. The new designs can generate an almost pure SH0 wave. The dual design has a very strong directivity that is useful for several guided-wave-based SHM applications. The conclusions on the design’s properties as a transmitter are also valid for its properties as a sensor due to the reciprocity of piezoelectric transducers.
The operation efficiency and safety of pressure vessels in the oil and gas industry profits from an accurate knowledge about the inner filling distribution. However, an accurate and reliable estimation of the multi-phase height levels in such objects is a challenging task, especially when considering the high demands in practicability, robustness in harsh environments and safety regulations. Most common systems rely on impractical instrumentation, lack the ability to measure solid phases or require additional safety precautions due to their working principle. In this work, another possibility to determine height levels by attenuation tomography with guided elastic waves is proposed. The method uses a complete instrumentation on the outer vessel shell and is based on the energy conversion rates along the travel path of the guided waves. Noisy data and multiple measurements from sparsely distributed sensor networks are translated into filling levels with accuracies in the centimeter range by solving a constrained optimization problem. It was possible to simultaneously determine sand, water, and oil phases on a mock-up scale experiment, even for artificially created sand slopes. The accuracy was validated by artificial benchmarking for a horizontal vessel, giving references for constructing an affordable prototype system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.