Speech understanding in noisy environments is still one of the major challenges for cochlear implant (CI) users in everyday life. We evaluated a speech enhancement algorithm based on neural networks (NNSE) for improving speech intelligibility in noise for CI users. The algorithm decomposes the noisy speech signal into time-frequency units, extracts a set of auditory-inspired features and feeds them to the neural network to produce an estimation of which frequency channels contain more perceptually important information (higher signal-to-noise ratio, SNR). This estimate is used to attenuate noise-dominated and retain speech-dominated CI channels for electrical stimulation, as in traditional n-of-m CI coding strategies. The proposed algorithm was evaluated by measuring the speech-in-noise performance of 14 CI users using three types of background noise. Two NNSE algorithms were compared: a speaker-dependent algorithm, that was trained on the target speaker used for testing, and a speaker-independent algorithm, that was trained on different speakers. Significant improvements in the intelligibility of speech in stationary and fluctuating noises were found relative to the unprocessed condition for the speaker-dependent algorithm in all noise types and for the speaker-independent algorithm in 2 out of 3 noise types. The NNSE algorithms used noise-specific neural networks that generalized to novel segments of the same noise type and worked over a range of SNRs. The proposed algorithm has the potential to improve the intelligibility of speech in noise for CI users while meeting the requirements of low computational complexity and processing delay for application in CI devices.
Cochlear implant (CI) users receive only limited sound information through their implant, which means that they struggle to understand speech in noisy environments. Recent work has suggested that combining the electrical signal from the CI with a haptic signal that provides crucial missing sound information (“electro-haptic stimulation”; EHS) could improve speech-in-noise performance. The aim of the current study was to test whether EHS could enhance speech-in-noise performance in CI users using: (1) a tactile signal derived using an algorithm that could be applied in real time, (2) a stimulation site appropriate for a real-world application, and (3) a tactile signal that could readily be produced by a compact, portable device. We measured speech intelligibility in multi-talker noise with and without vibro-tactile stimulation of the wrist in CI users, before and after a short training regime. No effect of EHS was found before training, but after training EHS was found to improve the number of words correctly identified by an average of 8.3%-points, with some users improving by more than 20%-points. Our approach could offer an inexpensive and non-invasive means of improving speech-in-noise performance in CI users.
Many cochlear implant (CI) users achieve excellent speech understanding in acoustically quiet conditions but most perform poorly in the presence of background noise. An important contributor to this poor speech-in-noise performance is the limited transmission of low-frequency sound information through CIs. Recent work has suggested that tactile presentation of this low-frequency sound information could be used to improve speech-in-noise performance for CI users. Building on this work, we investigated whether vibro-tactile stimulation can improve speech intelligibility in multi-talker noise. The signal used for tactile stimulation was derived from the speech-in-noise using a computationally inexpensive algorithm. Eight normal-hearing participants listened to CI simulated speech-in-noise both with and without concurrent tactile stimulation of their fingertip. Participants' speech recognition performance was assessed before and after a training regime, which took place over 3 consecutive days and totaled around 30 min of exposure to CI-simulated speech-in-noise with concurrent tactile stimulation. Tactile stimulation was found to improve the intelligibility of speech in multi-talker noise, and this improvement was found to increase in size after training. Presentation of such tactile stimulation could be achieved by a compact, portable device and offer an inexpensive and noninvasive means for improving speech-in-noise performance in CI users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.