Gelatin methacryloyl (acetyl) (GM(A)) is increasingly investigated for various applications in life sciences and medicine, for example, drug release or tissue engineering. Gelatin type A and type B are utilized for GAM(A) and GBM(A) preparation, but the impact of gelatin raw material on modification reaction and resulting polymer properties is rather unknown so far. Therefore, the degrees of modification (DMA) and physicochemical properties of five GAM(A) and GBM(A) derivatives are compared: The degrees of methacryloylation (0.32–0.98 mmol g−1) are indistinguishable for GAM(A) and GBM(A) as are the sol‐gel temperatures. Isoelectric points, solution viscosities, and hydrodynamic radii which are distinct for GA and GB, converge with increasing DMA. Interestingly, differences are measured for the storage moduli and equilibrium degrees of swelling of respective GA and GB derivative‐based hydrogels, in spite of their comparable DMA. This underlines the importance of GM(A) characterization beyond the modification degree.
This article contains data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers (PSUs) and is related to the research article entitled “Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application” (Riehle et al., 2018) [1]. These elastomers were prepared by a two-step polyaddition using the aliphatic diisocyanate 4,4′-Methylenbis(cyclohexylisocyanate) (H12MDI), a siloxane-based chain extender 1,3-Bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (APTMDS) and amino-terminated polydimethylsiloxanes (PDMS) or polydimethyl-methyl-phenyl-siloxane-copolymers (PDMS-Me,Ph), respectively. (More details about the synthesis procedure and the reaction scheme can be found in the related research article (Riehle et al., 2018) [1]).Amino-terminated polydimethylsiloxanes with varying molecular weights and PDMS-Me,Ph-copolymers were prepared prior by a base-catalyzed ring-chain equilibration of a cyclic siloxane and the endblocker APTMDS. This DiB article contains a procedure for the synthesis of the base catalyst tetramethylammonium-3-aminopropyl-dimethylsilanolate and a generic synthesis procedure for the preparation of a PDMS having a targeted number average molecular weight trueM¯n of 3000 g mol−1. Molecular weights and the amount of methyl-phenyl-siloxane within the polysiloxane-copolymers were determined by 1H NMR and 29Si NMR spectroscopy. The corresponding NMR spectra and data are described in this article.Additionally, this DiB article contains processed data on in line and off line FTIR-ATR spectroscopy, which was used to follow the reaction progress of the polyaddition by showing the conversion of the diisocyanate. All relevant IR band assignments of a polydimethylsiloxane-urea spectrum are described in this article.Finally, data on the tensile properties and the mechanical hysteresis-behaviour at 100% elongation of PDMS-based polyurea-elastomers are shown in dependence to the PDMS molecular weight.
The effect of hard segment content and diisocyanate structure on the transparency and mechanical properties of soft poly(dimethylsiloxane) (PDMS)-based urea elastomers (PSUs) was investigated. A series of PSU elastomers were synthesized from an aminopropyl-terminated PDMS (M¯n: 16,300 g·mol−1), which was prepared by ring chain equilibration of the monomers octamethylcyclotetrasiloxane (D4) and 1,3-bis(3-aminopropyl)-tetramethyldisiloxane (APTMDS). The hard segments (HSs) comprised diisocyanates of different symmetry, i.e., 4,4′-methylenebis(cyclohexyl isocyanate) (H12MDI), 4,4′-methylenebis(phenyl isocyanate) (MDI), isophorone diisocyanate (IPDI), and trans-1,4-cyclohexane diisocyanate (CHDI). The HS contents of the PSU elastomers based on H12MDI and IPDI were systematically varied between 5% and 20% by increasing the ratio of the diisocyanate and the chain extender APTMDS. PSU copolymers of very low urea HS contents (1.0–1.6%) were prepared without the chain extender. All PSU elastomers and copolymers exhibited good elastomeric properties and displayed elongation at break values between 600% and 1100%. The PSUs with HS contents below 10% were transparent and became increasingly translucent at HS contents of 15% and higher. The Young’s modulus (YM) and ultimate tensile strength values of the elastomers increased linearly with increasing HS content. The YM values differed significantly among the PSU copolymers depending on the symmetry of the diisocyanate. The softest elastomer was that based on the asymmetric IPDI. The elastomers synthesized from H12MDI and MDI both exhibited an intermediate YM, while the stiffest elastomer, i.e., that comprising the symmetric CHDI, had a YM three-times higher than that prepared with IPDI. The PSUs were subjected to load–unload cycles at 100% and 300% strain to study the influence of HS morphology on 10-cycle hysteresis behavior. At 100% strain, the first-cycle hysteresis values of the IPDI- and H12MDI-based elastomers first decreased to a minimum of approximately 9–10% at an HS content of 10% and increased again to 22–28% at an HS content of 20%. A similar, though less pronounced, trend was observed at 300% strain. First-cycle hysteresis among the PSU copolymers at 100% strain was lowest in the case of CHDI and highest in the IPDI-based elastomer. However, this effect was reversed at 300% strain, with CHDI displaying the highest hysteresis in the first cycle. In vitro cytotoxicity tests performed using HaCaT cells did not show any adverse effects, revealing their potential suitability for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.