Abstract. In this paper, we describe the PALM model system 6.0. PALM (formerly an abbreviation for Parallelized Large-eddy Simulation Model and now an independent name) is a Fortran-based code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. This is a follow-up paper to the PALM 4.0 model description in Maronga et al. (2015). During the last years, PALM has been significantly improved and now offers a variety of new components. In particular, much effort was made to enhance the model with components needed for applications in urban environments, like fully interactive land surface and radiation schemes, chemistry, and an indoor model. This paper serves as an overview paper of the PALM 6.0 model system and we describe its current model core. The individual components for urban applications, case studies, validation runs, and issues with suitable input data are presented and discussed in a series of companion papers in this special issue.
Abstract. In this paper we describe the PALM model system 6.0. PALM is a Fortran based code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. This is a follow-up paper to the PALM 4.0 model description in Maronga et al. (2015). During the last years, PALM has been significantly improved and now offers a variety of new components. In particular, much effort was made to enhance the model by components needed for applications in urban environments, like fully interactive land surface and radiation schemes, chemistry, and an indoor model. This paper serves as an overview paper of the PALM 6.0 model system and we describe its current model core. The individual components for urban applications, case studies, validation runs, and issues with suitable input data are presented and discussed in a series of companion papers in this special issue.
di saBatino, JunXia dou, daniel r. dreW, John M. edWards, JoaChiM fallMann, krzysztof fortuniak, JeMMa gornall, toBias groneMeier, Christos h. halios, denise hertWig, kohin hirano, alBert a. M. holtslag, zhiWen luo, gerald Mills, Makoto nakayoshi, kathy Pain, k. heinke sChlünzen, stefan sMith, lionel soulhaC, gert-Jan steeneveld, ting sun, natalie e theeuWes, david thoMson, JaMes a. voogt, helen C. Ward, zheng-tong Xie, and Jian zhong W ith the majority of people experiencing weather in urban areas, it is critical to understand cities, weather, and climate impacts. Increasing climate extremes (e.g., heat stress, air pollution, flash flooding) combined with the density of people means it is essential that city infrastructure and operations can withstand high-impact weather. Thus, there is a huge opportunity to mitigate climate change effects and provide healthier environments through design and planning to reduce the background climate and urban effects. However, our understanding of the underlying urban atmospheric processes are primarily derived from studies of separate aspects, rather than the complete, human-environment system. Air quality modeling has not been widely integrated with aerosol feedbacks on local climate, while few city-greening scenarios have tested the impacts on boundary layer pollutant dispersion or the carbon cycle. Building design guidelines have been developed without incorporating the impact of waste heat on local temperatures, which, in turn, determines building performance. Integration of such feedbacks is imperative as they define, rather than just modify, urban climate.There is an urgent need to link processes that people experience at street level (human scale) to processes at neighborhood, city, and regional scales. As these scales have traditionally been the focus for specialists in different fields, few observation and model systems cross these scales. However, understanding the interactions between these scales is critical for the design of future parametrizations ES261OCTOBER 2017 AMERICAN METEOROLOGICAL SOCIETY | and observation networks. Although models and observational methods are emerging that permit research into scale interactions [e.g., high-resolution numerical weather prediction (NWP), large-domain computational fluid dynamic (CFD) models, remote sensing, extensive sensor networks, vertical remote sensing], an integrated approach across methodologies is currently lacking.To tackle these scale interactions requires diverse skills from a wide range of research communities. This is a daunting challenge. However, improved understanding of urban atmospheric processes such as clouds and precipitation, heat transfer, and convection would enable improvements in urban system models to provide seamless hazard prediction at all time scales. Hence, an initial focus on the meteorological aspects of the research challenge may be a more manageable problem, even though the scope is still large. As such, it was identified that within the United Kingdom there is an urgent need to devel...
Ventilation in cities is crucial for the well being of their inhabitants. Therefore, local governments require air ventilation assessments (AVAs) prior to the construction of new buildings. In a standard AVA, however, only neutral stratification is considered, although diabatic and particularly unstable conditions may be observed more frequently in nature. The results presented here indicate significant changes in ventilation within most of the area of Kowloon City, Hong Kong, included in the study. A new definition for calculating ventilation was introduced, and used to compare the influence of buildings on ventilation under conditions of neutral and unstable stratification. The overall ventilation increased due to enhanced vertical mixing. In the vicinity of exposed buildings, however, ventilation was weaker for unstable stratification than for neutral stratification. The influence on ventilation by building parameters, such as the plan area index, was altered when unstable stratification was considered. Consequently, differences in stratification were shown to have marked effects on ventilation estimates, which should be taken into consideration in future AVAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.