Recent studies suggest that vibration of piano keys affect the perceived quality of the instrument, as well as the dynamic control and timing in piano playing. However, the time signals of piano key vibrations and its physical properties have not been analyzed and compared to the threshold of vibration sensation in a real-life playing situation yet. This study investigates piano key vibrations and explores the diversity of vibrations among different pianos with a laser Doppler vibrometer. A pianist was performing single keystrokes, note sequences, and a music piece excerpt on four concert grand pianos, five grand pianos, and two upright pianos. The measurements showed peak displacement levels up to 80 m and the frequency spectrum of the vibrations is dominated by frequencies lower than 500 Hz. Finally, a frequency weighting filter is introduced to show that vibration displacement time signals exceed the threshold of human vibration sensation for all evaluated instruments, when a note sequence is played in the bass to mid range with a single hand at forte level. The conducted experiments demonstrate that the vibration characteristics vary distinctively among the investigated pianos.
In this study, the influence of piano key vibration levels on players’ personal judgment of the instrument quality and on the dynamics and timing of the players’ performance of a music piece excerpt is examined. In an experiment four vibration levels were presented to eleven pianists playing on a digital grand piano with grand piano-like key action. By evaluating the players’ judgment of the instrument quality, strong integration effects of auditory and tactile information were observed. Differences in the sound of the instrument were perceived by the players, when the vibration level in the keys was changed and the results indicate a sound-dependent optimum of the vibration levels. By analyzing the influence of the vibration levels on the timing and dynamics accuracy of the pianists’ musical performances, we could not observe systematic differences that depend on the vibration level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.