This work presents a two-stage text line detection method for historical documents. Each detected text line is represented by its baseline. In a first stage, a deep neural network called ARU-Net labels pixels to belong to one of the three classes: baseline, separator or other. The separator class marks beginning and end of each text line. The ARU-Net is trainable from scratch with manageably few manually annotated example images (less than 50). This is achieved by utilizing data augmentation strategies. The network predictions are used as input for the second stage which performs a bottom-up clustering to build baselines. The developed method is capable of handling complex layouts as well as curved and arbitrarily oriented text lines. It substantially outperforms current state-of-the-art approaches. For example, for the complex track of the cBAD: IC-DAR2017 Competition on Baseline Detection the Fvalue is increased from 0.859 to 0.922. The framework to train and run the ARU-Net is open source.
Encoder-decoder models have become an effective approach for sequence learning tasks like machine translation, image captioning and speech recognition, but have yet to show competitive results for handwritten text recognition. To this end, we propose an attention-based sequence-to-sequence model. It combines a convolutional neural network as a generic feature extractor with a recurrent neural network to encode both the visual information, as well as the temporal context between characters in the input image, and uses a separate recurrent neural network to decode the actual character sequence. We make experimental comparisons between various attention mechanisms and positional encodings, in order to find an appropriate alignment between the input and output sequence. The model can be trained end-to-end and the optional integration of a hybrid loss allows the encoder to retain an interpretable and usable output, if desired. We achieve competitive results on the IAM and ICFHR2016 READ data sets compared to the state-of-theart without the use of a language model, and we significantly improve over any recent sequence-to-sequence approaches.
The cBAD competition aims at benchmarking stateof-the-art baseline detection algorithms. It is in line with previous competitions such as the ICDAR 2013 Handwriting Segmentation Contest. A new, challenging, dataset was created to test the behavior of state-of-the-art systems on real world data. Since traditional evaluation schemes are not applicable to the size and modality of this dataset, we present a new one that introduces baselines to measure performance. We received submissions from five different teams for both tracks.
Text line detection is crucial for any application associated with Automatic Text Recognition or Keyword Spotting. Modern algorithms perform good on well-established datasets since they either comprise clean data or simple/homogeneous page layouts. We have collected and annotated 2036 archival document images from different locations and time periods. The dataset contains varying page layouts and degradations that challenge text line segmentation methods. Well established text line segmentation evaluation schemes such as the Detection Rate or Recognition Accuracy demand for binarized data that is annotated on a pixel level. Producing ground truth by these means is laborious and not needed to determine a method's quality. In this paper we propose a new evaluation scheme that is based on baselines. The proposed scheme has no need for binarization and it can handle skewed as well as rotated text lines. The ICDAR 2017 Competition on Baseline Detection and the ICDAR 2017 Competition on Layout Analysis for Challenging Medieval Manuscripts used this evaluation scheme. Finally, we present results achieved by a recently published text line detection algorithm.
Purpose An overview of the current use of handwritten text recognition (HTR) on archival manuscript material, as provided by the EU H2020 funded Transkribus platform. It explains HTR, demonstrates Transkribus, gives examples of use cases, highlights the affect HTR may have on scholarship, and evidences this turning point of the advanced use of digitised heritage content. The paper aims to discuss these issues. Design/methodology/approach This paper adopts a case study approach, using the development and delivery of the one openly available HTR platform for manuscript material. Findings Transkribus has demonstrated that HTR is now a useable technology that can be employed in conjunction with mass digitisation to generate accurate transcripts of archival material. Use cases are demonstrated, and a cooperative model is suggested as a way to ensure sustainability and scaling of the platform. However, funding and resourcing issues are identified. Research limitations/implications The paper presents results from projects: further user studies could be undertaken involving interviews, surveys, etc. Practical implications Only HTR provided via Transkribus is covered: however, this is the only publicly available platform for HTR on individual collections of historical documents at time of writing and it represents the current state-of-the-art in this field. Social implications The increased access to information contained within historical texts has the potential to be transformational for both institutions and individuals. Originality/value This is the first published overview of how HTR is used by a wide archival studies community, reporting and showcasing current application of handwriting technology in the cultural heritage sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.