The ability of the vitamin E (RRR-A-tocopherol) derivatives A-tocopheryl succinate (A-TOS) and A-tocopheryloxyacetic acid (A-TEA) to suppress tumor growth in preclinical animal models has recently led to increased interest in their potential use for treating human cancer. To make the use of these vitamin E analogues more clinically relevant, we compared the antitumor efficacy of orally and i.p. delivered forms of A-TEA and A-TOS against a murine mammary cancer (4T1) that bears resemblance to human breast cancer because of its poor immunogenicity and high metastatic potential. In cell culture studies, we showed that both compounds inhibited tumor colony formation and induced apoptotic death of tumor cells. To avoid solubility concerns associated with the hydrophobicity of A-TEA and A-TOS, we used the vesiculated forms of A-TEA (VA-TEA) and A-TOS (VA-TOS) for the in vivo tumor studies. Both compounds inhibited the growth of preestablished 4T1 tumors when given i.p. However, when given by oral gavage, only the esterase-resistant VA-TEA was able to suppress primary tumor growth and reduce lung metastasis. To make this approach more translatable to the clinic, A-TEA was incorporated into the diet and fed to tumor-bearing mice. We report here for the first time that dietary A-TEA delivery significantly inhibited primary tumor growth and dramatically reduced spontaneous metastatic spread to the lung in prophylactic and therapeutic settings. This study suggests that dietary A-TEA could prove useful as a relatively easy and effective modality for treating metastatic breast cancer.
The semi-synthetic vitamin E derivative alpha-tocopheryloxyacetic acid (α-TEA) induces tumor cell apoptosis and may offer a simple adjuvant supplement for cancer therapy if its mechanisms can be better understood. Here we report that α-TEA also triggers tumor cell autophagy and that it improves cross-presentation of tumor antigens to the immune system. α-TEA stimulated both apoptosis and autophagy in murine mammary and lung cancer cells and inhibition of caspase-dependent apoptosis enhanced α-TEA-induced autophagy. Cell exposure to α-TEA generated double membrane-bound vesicles indicative of autophagosomes, which efficiently cross-primed antigen-specific CD8+ T cells. Notably, vaccination with dendritic cells pulsed with α-TEA-generated autophagosomes reduced lung metastases and increased the survival of tumor-bearing mice. Taken together, our findings suggest that both autophagy and apoptosis signaling programs are activated during α-TEA-induced tumor cell killing. We suggest that the ability of α-TEA to stimulate autophagy and enhance cross-priming of CD8+ T cells might be exploited as an adjuvant strategy to improve stimulation of anti-tumor immune responses.
We recently demonstrated the anti-tumor efficacy of orally administered alpha-tocopheryloxyacetic acid (α-TEA), a redox silent and non-hydrolysable derivative of naturally occurring vitamin E. In order to move α-TEA closer to the clinic to benefit breast cancer patients, the present study had two goals. First to determine the minimal effective treatment dose and second to test the efficacy of dietary administration of α-TEA in the clinically relevant MMTV-PyMT mouse model of spontaneous breast cancer that more closely resembles human disease. The minimal effective dose of α-TEA was evaluated in the transplantable 4T1 tumor model and we demonstrate a dose-dependent decrease of primary tumor growth and reduction of metastatic spread to the lung. MMTV-PyMT mice were treated with oral α-TEA starting at six weeks of age for nine weeks with no apparent signs of drug toxicity. The α-TEA treatment delayed tumor development and significantly slowed tumor progression, resulting in a 6-fold reduction of the average cumulative tumor size. In addition, oral α-TEA caused an 80% reduction in spontaneous metastases. In situ analysis of tumor tissue identified apoptosis as an important mechanism of α-TEA-mediated tumor suppression in addition to inhibition of tumor cell proliferation. This study demonstrates, for the first time, the ability of orally administered α-TEA to delay tumor onset and to inhibit the progression and metastatic spread of a clinically relevant model of spontaneous breast cancer. Our finding of the high efficacy in this tumor model highlights the translational potential of oral α-TEA therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.