Event log files are used as input to any process mining algorithm. A main assumption of process mining is that each event has been assigned to a distinct process activity already. However, such mapping of events to activities is a considerable challenge. The current status-quo is that approaches indicate only likelihoods of mappings, since there is often more than one possible solution. To increase the quality of event to activity mappings this paper derives a contextualization for eventactivity mappings and argues for a stronger consideration of contextual factors. Based on a literature review, the paper provides a framework for classifying context factors for event-activity mappings. We aim to apply this framework to improve the accuracy of event-activity mappings and, thereby, process mining results in scenarios with low-level events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.