This paper describes an extension of the high efficiency video coding (HEVC) standard for coding of multi-view video and depth data. In addition to the known concept of disparity-compensated prediction, inter-view motion parameter, and inter-view residual prediction for coding of the dependent video views are developed and integrated. Furthermore, for depth coding, new intra coding modes, a modified motion compensation and motion vector coding as well as the concept of motion parameter inheritance are part of the HEVC extension. A novel encoder control uses view synthesis optimization, which guarantees that high quality intermediate views can be generated based on the decoded data. The bitstream format supports the extraction of partial bitstreams, so that conventional 2D video, stereo video, and the full multi-view video plus depth format can be decoded from a single bitstream. Objective and subjective results are presented, demonstrating that the proposed approach provides 50% bit rate savings in comparison with HEVC simulcast and 20% in comparison with a straightforward multi-view extension of HEVC without the newly developed coding tools.
Generative adversarial networks conditioned on textual image descriptions are capable of generating realistic-looking images. However, current methods still struggle to generate images based on complex image captions from a heterogeneous domain. Furthermore, quantitatively evaluating these text-to-image models is challenging, as most evaluation metrics only judge image quality but not the conformity between the image and its caption. To address these challenges we introduce a new model that explicitly models individual objects within an image and a new evaluation metric called Semantic Object Accuracy (SOA) that specifically evaluates images given an image caption. The SOA uses a pre-trained object detector to evaluate if a generated image contains objects that are mentioned in the image caption, e.g. whether an image generated from "a car driving down the street" contains a car. We perform a user study comparing several text-to-image models and show that our SOA metric ranks the models the same way as humans, whereas other metrics such as the Inception Score do not. Our evaluation also shows that models which explicitly model objects outperform models which only model global image characteristics.
Most learning algorithms require the practitioner to manually set the values of many hyperparameters before the learning process can begin. However, with modern algorithms, the evaluation of a given hyperparameter setting can take a considerable amount of time and the search space is often very high-dimensional. We suggest using a lower-dimensional representation of the original data to quickly identify promising areas in the hyperparameter space. This information can then be used to initialize the optimization algorithm for the original, higherdimensional data. We compare this approach with the standard procedure of optimizing the hyperparameters only on the original input.We perform experiments with various state-of-the-art hyperparameter optimization algorithms such as random search, the tree of parzen estimators (TPEs), sequential model-based algorithm con¯guration (SMAC), and a genetic algorithm (GA). Our experiments indicate that it is possible to speed up the optimization process by using lower-dimensional data representations at the beginning, while increasing the dimensionality of the input later in the optimization process. This is independent of the underlying optimization procedure, making the approach promising for many existing hyperparameter optimization algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.