This paper deals with parallelisation and implementation aspects of PDE-based image processing models for large cluster environments with distributed memory. As an example we focus on nonlinear diffusion filtering which we discretise by means of an additive operator splitting (AOS). We start by decomposing the algorithm into small modules that shall be parallelised separately. For this purpose image partitioning strategies are discussed and their impact on the communication pattern and volume is analysed. Based on the results we develop an algorithmic implementation with excellent scaling properties on massively connected low latency networks. Test runs on a high-end Myrinet cluster yield almost linear speedup factors up to 209 for 256 processors. This results in typical denoising times of 0.5 seconds for five iterations on a 256 × 256 × 128 data cube.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.