The paper presents a novel methodology for the estimation of the shape of the crystal size distribution (CSD) during a crystallization process. The approach, based on a combination of the quadrature method of moments (QMOM) and the method of characteristics (MOCH), provides a computationally efficient solution of the population balance equation (PBE) and hence a fast prediction of the dynamic evolution of the CSD for an entire batch. Furthermore, under the assumption that for supersaturation-controlled crystallization the main phenomenon is growth, an analytical CSD estimator is derived for generic size-dependent growth kinetics. These approaches are evaluated for the crystallization of potassium alum in water. The model parameters are identified on the basis of industrial experimental data, obtained using an efficient implementation of supersaturation control. The proposed methods are able to predict and reconstruct the dynamic evolution of the CSD during the batch. The QMOM-MOCH solution approach is evaluated in a model-based dynamic optimization study, which aims to obtain the optimal temperature profiles required to achieve desired target CSDs. The technique can serve as a soft sensor for predicting the CSD, or as a computationally efficient algorithm for off-line design or online adaptation of operating policies based on knowledge of the full CSD data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.