SummaryDART (Dynamic Animation and Robotics Toolkit) is a collaborative, cross-platform, open source library created by the Graphics Lab and Humanoid Robotics Lab at Georgia Institute of Technology with ongoing contributions from the Personal Robotics Lab at University of Washington and Open Source Robotics Foundation. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by its accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems in the geometric notations (Park, Bobrow, and Ploen 1995) and Featherstone's Articulated Body Algorithm (Featherstone 2008) using a Lie group formulation to compute forward dynamics (Ploen and Park 1999) and hybrid dynamics (Sohl and Bobrow 2001). For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides an efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. The frame semantics of DART allows users to define arbitrary reference frames (both inertial and non-inertial) and use those frames to specify or request data. For air-tight code safety, forward kinematics and dynamics values are updated automatically through lazy evaluation, making DART suitable for real-time controllers. In addition, DART provides flexibility to extend the API for embedding user-provided classes into DART data structures. Contacts and collisions are handled using an implicit time-stepping, velocity-based LCP (linear complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions (Stewart and Trinkle 1996). DART has applications in robotics and computer animation because it features a multibody dynamic simulator and various kinematic tools for control and motion planning.
Abstract-We present a practical strategy for real-time path planning for articulated robot arms in changing environments by integrating PRM for Changing Environments with 3D sensor data. Our implementation on Care-O-Bot 3 identifies bottlenecks in the algorithm and introduces new methods that solve the overall task of detecting obstacles and planning a path around them in under 100 ms.A fast planner is necessary to enable the robot to react to quickly changing human environments. We have tested our implementation in real-world experiments where a human subject enters the manipulation area, is detected and safely avoided by the robot. This capability is critical for future applications in automation and service robotics where humans will work closely with robots to jointly perform tasks.
We introduce acceleration-limited planning for manipulators as a middle ground between pure geometric planning and planning with full robot dynamics. It is more powerful than geometric planning and can be solved more efficiently than planning with full robot dynamics. We present a probabilistically complete RRT motion planner that considers joint acceleration limits and potentially non-zero start and goal velocities. It uses a fast, non-iterative steering method. We demonstrate both the power and efficiency of our planner using the problem of hitting a nail with a hammer, which requires the robot to reach a given goal velocity while avoiding obstacles. Our planner is able to solve this problem in less than 100 ms. In contrast, a purely geometric planner is unable to hit the nail at the desired velocity, whereas a standard kinodynamic RRT is multiple orders of magnitude slower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.