ForewordThe study of the fundamental structure of nuclear matter is a central thrust of physics research in the United States. As indicated in Frontiers of Nuclear Science, the 2007 Nuclear Science Advisory Committee long range plan, consideration of a future Electron-Ion Collider (EIC) is a priority and will likely be a significant focus of discussion at the next long range plan. We are therefore pleased to have supported the ten week program in fall 2010 at the Institute of Nuclear Theory which examined at length the science case for the EIC. This program was a major effort; it attracted the maximum allowable attendance over ten weeks.This report summarizes the current understanding of the physics and articulates important open questions that can be addressed by an EIC. It converges towards a set of "golden" experiments that illustrate both the science reach and the technical demands on such a facility, and thereby establishes a firm ground from which to launch the next phase in preparation for the upcoming long range plan discussions. We thank all the participants in this productive program. In particular, we would like to acknowledge the leadership and dedication of the five co-organizers of the program who are also the co-editors of this report.David Kaplan, Director, National Institute for Nuclear Theory Hugh Montgomery, Director, Thomas Jefferson National Accelerator Facility Steven Vigdor, Associate Lab Director, Brookhaven National Laboratory iii Preface This volume is based on a ten-week program on "Gluons and the quark sea at high energies", which took place at the Institute for Nuclear Theory (INT) in Seattle from September 13 to November 19, 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics. Guiding questions were• What are the crucial science issues?• How do they fit within the overall goals for nuclear physics?• Why can't they be addressed adequately at existing facilities?• Will they still be interesting in the 2020's, when a suitable facility might be realized?The program started with a five-day workshop on "Perturbative and Non-Perturbative Aspects of QCD at Collider Energies", which was followed by eight weeks of regular program and a concluding four-day workshop on "The Science Case for an EIC".More than 120 theorists and experimentalists took part in the program over ten weeks. It was only possible to smoothly accommodate such a large number of participants because of the extraordinary efforts of the INT staff, to whom we extend our warm thanks and appreciation. We thank the INT Director, David Kaplan, for his strong support of the program and for covering a significant portion of the costs for printing this volume. We gratefully acknowledge additional financial support provided by BNL and JLab.The program w...
We explore the possibility to construct higher-twist parton distributions in a nucleon at some low reference scale from convolution integrals of the light-cone wave functions (WFs). To this end we introduce simple models for the four-particle nucleon WFs involving three valence quarks and a gluon with total orbital momentum zero, and estimate their normalization (WF at the origin) using QCD sum rules. We demonstrate that these WFs provide one with a reasonable description of both polarized and unpolarized gluon parton densities at large values of Bjorken variable x > 0.5. Twist-three parton distributions are then constructed as convolution integrals of qqqg and usual three-quark WFs. The cases of the polarized structure function g_2(x,Q^2) and single transverse spin asymmetries are considered in detail. We find that the so-called gluon-pole contribution to twist-three distributions relevant for single spin asymmetry vanishes in this model, but is generated perturbatively at higher scales by the evolution, in the spirit of GRV parton distributions.Comment: 22 pages, 11 figure
Based on the collinear factorization approach, we present a comprehensive perturbative nextto-leading (NLO) analysis of deeply virtual meson production (DVMP). Our representation in conformal Mellin space can serve as basis for a global fitting procedure to access generalized parton distributions from experimental measurements of DVMP and deeply virtual Compton scattering (DVCS). We introduce a rather general formalism for the evaluation of conformal moments that can be developed further beyond the considered order. We also confirm previous diagrammatical findings in the pure singlet quark channel. Finally, we use the analytic properties of the hard scattering amplitudes to estimate qualitatively the size of radiative corrections and illustrate these considerations with some numerical examples. The results suggest that global NLO GPD fits, including both DVMP and DVCS data, could be more stable than often feared.
We discuss modeling of generalized parton distributions (GPDs), their access from present experiments, and the phenomenological potential of an electron-ion collider. In particular, we present a comparison of phenomenological models of GPD H, extracted from hard exclusive meson and photon production. Specific emphasis is given to the utilization of evolution effects at moderate x Bj in a future high-luminosity experiment within a larger Q 2 lever arm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.