a b s t r a c tThis article considers a posteriori error estimation and anisotropic mesh refinement for three-dimensional laminar aerodynamic flow simulations. The optimal order symmetric interior penalty discontinuous Galerkin discretization which has previously been developed for the compressible Navier-Stokes equations in two dimensions is extended to three dimensions. Symmetry boundary conditions are given which allow to discretize and compute symmetric flows on the half model resulting in exactly the same flow solutions as if computed on the full model. Using duality arguments, an error estimation is derived for estimating the discretization error with respect to the aerodynamic force coefficients. Furthermore, residual-based indicators as well as adjoint-based indicators for goal-oriented refinement are derived. These refinement indicators are combined with anisotropy indicators which are particularly suited to the discontinuous Galerkin (DG) discretization. Two different approaches based on either a heuristic criterion or an anisotropic extension of the adjoint-based error estimation are presented. The performance of the proposed discretization, error estimation and adaptive mesh refinement algorithms is demonstrated for 3d aerodynamic flows.
a b s t r a c tIn this article we present the extension of the a posteriori error estimation and goaloriented mesh refinement approach from laminar to turbulent flows, which are governed by the Reynolds-averaged Navier-Stokes and k-x turbulence model (RANS-kx) equations. In particular, we consider a discontinuous Galerkin discretization of the RANS-kx equations and use it within an adjoint-based error estimation and adaptive mesh refinement algorithm that targets the reduction of the discretization error in single as well as in multiple aerodynamic force coefficients. The accuracy of the error estimation and the performance of the goal-oriented mesh refinement algorithm is demonstrated for various test cases, including a two-dimensional turbulent flow around a three-element high lift configuration and a three-dimensional turbulent flow around a wing-body configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.