We present a study using a method able to assess tissue oxygenation, taking into account the absorption and the level of scattering in myocardial tissue using a calibrated fiber optic probe. With this method, interindividual comparisons of oxygenation can be made despite varying tissue optical properties during coronary artery bypass grafting (CABG). During CABG, there are needs for methods allowing continuous monitoring and prediction of the metabolism in the myocardial tissue. 14 patients undergoing CABG are investigated for tissue oxygenation during different surgical phases using a handheld fiber optic spectroscopic probe with a source-detector distance of less than 1 mm. The probe is calibrated using a light transport model, relating the absorption and reduced scattering coefficients (mu(a) and mu(s)') to the measured spectra. By solving the inverse problem, absolute measures of tissue oxygenation are evaluated by the sum of oxygenized hemoglobin and myoglobin. Agreement between the model and measurements is obtained with an average correlation coefficient R2 of 0.96. Oxygenation is found to be significantly elevated after aorta cross-clamping and cardioplegic infusion, as well as after reperfusion, compared to a baseline (p<0.05). Tissue oxygenation decreases during cardiac arrest and increases after reperfusion.
The aim of this study was to compare a previously used light transport model (I) comprising the chromophores hemo- and myoglobin, fat, and water, with two extended models, where the chromophores of cytochrome aa3, methemo- and metmyoglobin are added (model II), and in addition, accounting for an inhomogenous hemoglobin distribution (model III). The models were evaluated using calibrated diffuse reflectance spectroscopy measurements on the human myocardium. Model II proved a significantly better spectral fitting, especially in the wavelength ranges corresponding to prominent absorption characteristics for the added chromophores. Model III was significantly better than model II and displayed a markedly higher tissue fraction and saturation of hemo- and myoglobin. The estimated tissue chromophore fractions, saturation and oxidation levels, were in agreement with other studies, demonstrating the potential of diffuse reflectance spectroscopy measurements for evaluating open heart surgery. However, the choice of chromophores and vessel packaging effects in the light transport model has a major effect on the results.
A method for determining a two-parametric Gegenbauer-kernel phase function that accurately describes the diffuse reflectance from a polydispersive scattering media at small source-detector separations (0.23 to 1.2 mm), is presented. The method involves spectral collimated transmission measurements, spatially resolved spectral diffuse reflectance (SRDR) measurements, and inverse Monte Carlo technique. Both absolute calibration (using a monodispersive polystyrene microsphere suspension) and relative calibration (eliminating differences between fibers) of SRDR spectra yielded comparable results. When applied to water dilutions of milk, simulated and measured spectra deviated less than 6.5% and 2.5% for the absolute and relative calibration case, respectively, even for the closest fiber separation. Corresponding values for milk including ink as an absorber, were 13.4% and 7.3%.
Abstract. Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo-and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves ͑group A͒ gave an increasing oxygen saturation of 19± 4%, 24± 5%, and 28± 8% ͑p Ͻ 0.001, ANOVA repeated measures design͒ and mean tissue fractions of 1.6% ͑cytochrome aa3͒ and 1.1% ͑hemo-and myoglobin͒. Cardiac arrest in two calves gave an oxygen saturation lower than 5%. In two calves ͑group B͒, a left ventricular assistive device ͑LVAD pump͒ was implanted. Oxygen saturation in group B animals increased with LVAD pump speed ͑p Ͻ 0.001, ANOVA͒ and with oxygen content in inhaled gas ͑p Ͻ 0.001, ANOVA͒. The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.