Metformin may act renoprotective prior to kidney transplantation by reducing ischemia-reperfusion injury (IRI). This study examined whether metformin preconditioning and postconditioning during ex vivo normothermic machine perfusion (NMP) of rat and porcine kidneys affect IRI. In the rat study, saline or 300 mg/kg metformin was administered orally twice on the day before nephrectomy. After 15 minutes of warm ischemia, kidneys were preserved with static cold storage for 24 hours. Thereafter, 90 minutes of NMP was performed with the addition of saline or metformin (30 or 300 mg/L). In the porcine study, after 30 minutes of warm ischemia, kidneys were preserved for 3 hours with oxygenated hypothermic machine perfusion. Subsequently, increasing doses of metformin were added during 4 hours of NMP. Metformin preconditioning of rat kidneys led to decreased injury perfusate biomarkers and reduced proteinuria. Postconditioning of rat kidneys resulted, dose-dependently, in less tubular cell necrosis and vacuolation. Heat shock protein 70 expression was increased in metformintreated porcine kidneys. In all studies, creatinine clearance was not affected. In conclusion, both metformin preconditioning and postconditioning can be done safely and improved rat and porcine kidney quality. Because the effects are minor, it is unknown which strategy might result in improved organ quality after transplantation.
IntroductionMetformin can accumulate and cause lactic acidosis in patients with renal insufficiency. Metformin is known to inhibit mitochondria, while renal secretion of the drug by proximal tubules indirectly requires energy. We investigated whether addition of metformin before or during ex vivo isolated normothermic machine perfusion (NMP) of porcine and rat kidneys affects its elimination.Research design and methodsFirst, Lewis rats were pretreated with metformin or saline the day before nephrectomy. Subsequently, NMP of the kidney was performed for 90 min. Metformin was added to the perfusion fluid in one of three different concentrations (none, 30 mg/L or 300 mg/L). Second, metformin was added in increasing doses to the perfusion fluid during 4 hours of NMP of porcine kidneys. Metformin concentration was determined in the perfusion fluid and urine by liquid chromatography-tandem mass spectrometry.ResultsMetformin clearance was approximately 4–5 times higher than creatinine clearance in both models, underscoring secretion of the drug. Metformin clearance at the end of NMP in rat kidneys perfused with 30 mg/L was lower than in metformin pretreated rats without the addition of metformin during perfusion (both p≤0.05), but kidneys perfused with 300 mg/L trended toward lower metformin clearance (p=0.06). Creatinine clearance was not different between treatment groups. During NMP of porcine kidneys, metformin clearance peaked at 90 min of NMP (18.2±13.7 mL/min/100 g). Thereafter, metformin clearance declined, while creatinine clearance remained stable. This observation can be explained by saturation of metformin transporters with a Michaelis-Menten constant (95% CI) of 23.0 (10.0 to 52.3) mg/L.ConclusionsMetformin was secreted during NMP of both rat and porcine kidneys. Excretion of metformin decreased under increasing concentrations of metformin, which might be explained by saturation of metformin transporters rather than a self-inhibitory effect. It remains unknown whether a self-inhibitory effect contributes to metformin accumulation in humans with longer exposure times.
Background: In 2016 we observed a marked increase in functional delayed graft function (fDGF) in our living donor kidney transplantation (LDKT) recipients from 8.5% in 2014 and 8.8% in 2015 to 23.0% in 2016. This increase coincided with the introduction of a goal-directed fluid therapy (GDFT) protocol in our kidney transplant recipients. Hereupon, we changed our intraoperative fluid regimen to a fixed amount of 50 mL/kg body weight (BW) and questioned whether the intraoperative fluid regimen was related to this increase in fDGF. Methods: a retrospective cohort analysis of all donors and recipients in our LDKT program between January 2014–February 2017 (n = 275 pairs). Results: Univariate analysis detected various risk factors for fDGF. Dialysis dependent recipients were more likely to develop fDGF compared to pre-emptively transplanted patients (p < 0.001). Recipients developing fDGF received less intraoperative fluid (36 (25.9–50.0) mL/kg BW vs. 47 (37.3–55.6) mL/kg BW (p = 0.007)). The GDFT protocol resulted in a reduction of intraoperative fluid administration on average by 850 mL in total volume and 21% in mL/kg BW compared to our old protocol (p < 0.001). In the unadjusted analysis, a higher intraoperative fluid volume in mL/kg BW was associated with a lower risk for the developing fDGF (OR 0.967, CI (0.941–0.993)). After adjustment for the confounders, prior dialysis and the use of intraoperative noradrenaline, the relationship of fDGF with fluid volume was still apparent (OR 0.970, CI (0.943–0.998)). Conclusion: Implementation of a GDFT protocol led to reduced intraoperative fluid administration in the LDKT recipients. This intraoperative fluid restriction was associated with the development of fDGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.