Newly developed scientific complementary metal–oxide–semiconductor (sCMOS) cameras have the potential to dramatically accelerate data acquisition in single-molecule switching nanoscopy (SMSN) while simultaneously increasing the effective quantum efficiency. However, sCMOS-intrinsic pixel-dependent readout noise substantially reduces the localization precision and introduces localization artifacts. Here we present algorithms that overcome these limitations and provide unbiased, precise localization of single molecules at the theoretical limit. In combination with a multi-emitter fitting algorithm, we demonstrate single-molecule localization super-resolution imaging at up to 32 reconstructed images/second (recorded at 1,600–3,200 camera frames/second) in both fixed and living cells.
Mismatch repair-deficient (MMRd) cancers have varied responses to immune checkpoint blockade (ICB). We conducted a phase 2 clinical trial of the PD-1 inhibitor pembrolizumab in 24 patients with MMRd endometrial cancer (NCT02899793). Patients with mutational MMRd tumors (6 patients) had higher response rates and longer survival than those with epigenetic MMRd tumors (18 patients). Mutation burden was higher in tumors with mutational MMRd compared to epigenetic MMRd; however, within each category of MMRd, mutation burden was not correlated with ICB response. Pre-treatment JAK1 mutations were not associated with primary resistance to pembrolizumab. Longitudinal single-cell RNA-seq of circulating immune cells revealed contrasting modes of anti-tumor immunity for mutational vs. epigenetic MMRd cancers. Whereas effector CD8+ T cells correlated with regression of mutational MMRd tumors, activated CD16+ NK cells were associated with ICB-responsive epigenetic MMRd tumors. These data highlight the interplay between tumor-intrinsic and extrinsic factors that influence ICB response.
Molecular chaperone heat shock protein 90 (HSP90) is involved in oncogenic signaling pathways including epithelialmesenchymal transition (EMT), a key process in tumor initiation, progression, metastasis, and chemoresistance. The molecular mechanisms underlying the involvement of HSP90 in EMT are still under investigation. In this study, we identified a previously unrecognized role of HSP90 in cooperating with signal transducer and activator of transcription 3 (STAT3) to regulate TWIST1 transcription in cancer cells. The HSP90 inhibitor 17-N-allylamino-17demethoxygeldanamycin suppressed TWIST1 mRNA expression and promoter activity in epithelial ovarian cancer, renal clear cell cancer, and nasopharyngeal cancer cell lines. The interactions between HSP90 and transcription factors were visualized in cancer cell lines and tumor tissues using proximity ligation assays. Our findings reveal that HSP90 promotes the binding of STAT3 to the TWIST1 promoter, leading to the transcription of TWIST1. The inhibition of HSP90 downregulates STAT3 activity and TWIST1 transcription, thereby suppressing EMT and potentially inhibiting tumor progression, metastasis, and chemoresistance in different types of cancers. SIGNIFICANCE STATEMENT Our study provides new evidence that HSP90 promotes EMT through enhancing TWIST1 transcription, which can be suppressed by HSP90 inhibitors. The HSP90 inhibitor inhibits EMT, thus potentially slowing down tumor growth, invasion, dissemination, metastasis, and drug resistance. These findings will hopefully pave the way for new therapeutic opportunities to target EMT and metastasis using HSP90 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.