We present property-tailored all-electron relativistic Karlsruhe basis sets for the elements hydrogen to radon.
Branching ratios of competing unimolecular reactions often exhibit a complicated temperature and pressure dependence that makes modeling of complex reaction systems in the gas phase difficult. In particular, the competition...
Methyl formate (MF) is the smallest carboxylic ester and currently considered a promising alternative fuel. It can also serve as a model compound to study the combustion chemistry of the ester group, which is a typical structural feature in many biodiesel components. In the present work, the pyrolysis of MF was investigated behind reflected shock waves at temperatures between 1430 and 2070 K at a nominal pressure of 1.1 bar. Both time-resolved hydrogen atom resonance absorption spectroscopy (H-ARAS) and time-resolved time-of-flight mass spectrometry (TOF-MS) were used for species detection. Additionally, the reaction of MF and perdeuterated MF-d 4 with H atoms was investigated at temperatures between 1000 and 1300 K at nominal pressures of 0.4 and 1.1 bar with H-ARAS. In the latter experiments, ethyl iodide served as precursor for H atoms. Rate coefficients of seven parallel unimolecular decomposition channels of MF and five parallel reaction channels of the MF + H reaction were calculated from statistical rate theory on the basis of molecular and transition state data from quantum chemical calculations. These calculated rate coefficients were implemented into an MF pyrolysis/oxidation mechanism from the literature, and the experimental concentration–time profiles of H (from ARAS) as well as MF, CH3OH, HCHO, and CO (from TOF-MS) were modeled. It turned out that the literature mechanism, which was originally validated against flow-reactor experiments, ignition delay times, and laminar burning velocities, was generally able to fit also the concentration–time profiles from the shock tube experiments reasonably well. The agreement could still be improved by substituting the original rate coefficients, which were estimated from structure–reactivity relationships, by the values calculated from statistical rate theory in the present work. Details of the channel branching are discussed, and the updated mechanism is given, also in machine-readable form.
We have studied the capability of He+ focused ion beam (He+-FIB) patterning to fabricate defect arrays on the Si/SiO2/Graphene interface using a combination of atomic force microscopy (AFM) and Raman imaging to probe damage zones. In general, an amorphized ‘blister’ region of cylindrical symmetry results upon exposing the surface to the stationary focused He+ beam. The topography of the amorphized region depends strongly on the ion dose, DS , (ranging from 103 to 107ions/spot) with craters and holes observed at higher doses. Furthermore, the surface morphology depends on the distance between adjacent irradiated spots, LS . Increasing the dose leads to (enhanced) subsurface amorphization and a local height increase relative to the unexposed regions. At the highest areal ion dose, the average height of a patterned area also increases as ∼1/LS . Correspondingly, in optical micrographs, the µm2-sized patterned surface regions change appearance. These phenomena can be explained by implantation of the He+ ions into the subsurface layers, formation of helium nanobubbles, expansion and modification of the dielectric constant of the patterned material. The corresponding modifications of the terminating graphene monolayer have been monitored by micro Raman imaging. At low ion doses, DS , the graphene becomes modified by carbon atom defects which perturb the 2D lattice (as indicated by increasing D/G Raman mode ratio). Additional x-ray photoionization spectroscopy (XPS) measurements allow us to infer that for moderate ion doses, scattering of He+ ions by the subsurface results in the oxidation of the graphene network. For largest doses and smallest LS values, the He+ beam activates extensive Si/SiO2/C bond rearrangement and a multicomponent material possibly comprising SiC and silicon oxycarbides, SiOC, is observed. We also infer parameter ranges for He+-FIB patterning defect arrays of potential use for pinning transition metal nanoparticles in model studies of heterogeneous catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.