Antibody affinity maturation, a hallmark of adaptive immune responses, results from the selection of B cells expressing somatically hypermutated B cell receptors (BCRs) with increased affinity for antigens. Despite the central role of affinity maturation in antibody responses, the molecular mechanisms by which the increased affinity of a B cell for antigen is translated into a selective advantage for that B cell in immune responses is incompletely understood. We use high resolution live-cell imaging to provide evidence that the earliest BCR-intrinsic events that follow within seconds of BCR–antigen binding are highly sensitive to the affinity of the BCR for antigen. High affinity BCRs readily form oligomers and the resulting microclusters grow rapidly, resulting in enhanced recruitment of Syk kinase and calcium fluxes. Thus, B cells are able to read the affinity of antigen by BCR-intrinsic mechanisms during the earliest phases of BCR clustering, leading to the initiation of B cell responses.
Wide-field single-molecule fluorescence microscopy has become an established tool for the study of dynamic biological processes which occur in the plane of a cellular membrane. In the current study we have extended this technique to the three-dimensional analysis of molecular mobility. Introduction of a cylindrical lens into the emission path of a microscope produced some astigmatism which was used to obtain the full three-dimensional position information. The localization accuracy of fluorescent objects was calculated theoretically and subsequently confirmed by simulations and by experiments. For further validation individual quantum dots were followed when passively diffusing and actively transported within life cells.
Summary
Memory B cells express high affinity, immunoglobulin B cell receptors (IgG-BCRs) that enhance B cell responses giving rise to the rapid production of high affinity, IgG antibodies. Despite the central role of IgG-BCRs in memory responses, the mechanisms by which the IgG-BCRs function to enhance B cell responses are not fully understood. Using high-resolution live-cell imaging we showed that independent of affinity, IgG1-BCRs dramatically enhanced the earliest BCR-intrinsic events that followed within seconds of B cells’ encounter with membrane bound antigen including BCR oligomerization and BCR microcluster growth, leading to Syk kinase recruitment and calcium responses. The enhancement of these early events was dependent on a membrane proximal region of the IgG1 cytoplasmic tail not previously appreciated to play a role in IgG1-BCR signaling. Thus, intrinsic properties of the IgG1-BCR enhance early antigen-driven events that ultimately translate into heightened signaling.
SUMMARY
Cytotoxic lymphocytes kill target cells by releasing the content of secretory lysosomes at the immune synapse. To obtain information on the dynamics and control of cytotoxic immune synapses we imaged human primary, live natural killer cells on lipid bilayers carrying ligands of activation receptors. Formation of an organized synapse was dependent on the presence of the β2 integrin ligand ICAM-1. Ligands of co-activation receptors 2B4 and NKG2D segregated into central and peripheral regions, respectively. Lysosomal protein LAMP-1 that was exocytosed during degranulation accumulated in a large and spatially stable cluster, which overlapped with a site of membrane internalization. Lysosomal compartments reached the plasma membrane at focal points adjacent to centrally accumulated LAMP-1. Imaging of fixed cells revealed that perforin-containing granules were juxtaposed to an intracellular compartment where exocytosed LAMP-1 was retrieved. Thus, cytotoxic immune synapses include a central region of bidirectional vesicular traffic, which is controlled by integrin signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.