A broad-based characterisation of a pharmacologically active dichloromethane extract from Isatis tinctoria leaves was carried out. For a comprehensive picture we also included the polar constituents of I. tinctoria (MeOH extract) and for comparative purposes, the taxonomically closely related plant I. indigotica. Diode array detector, evaporative light scattering detector, atmospheric pressure chemical ionisation and electrospray ionisation mass spectrometry, and electrospray ionisation time-of-flight mass spectrometry detectors were used in parallel to ensure a wide coverage of secondary metabolites with highly diverging analytical properties. Off-line microprobe nuclear magnetic resonance spectroscopy after peak purification by semi-preparative high-pressure liquid chromatography served for structure elucidation of some minor constituents. More than 65 compounds belonging to various structural classes such as alkaloids, flavonoids, fatty acids, porphyrins, lignans, carotenoids, glucosinolates and cyclohexenones were unambiguously identified, and tentative structures were proposed for additional compounds. Numerous compounds were identified for the first time in the genus Isatis, and an indolic alkaloid was discovered.
A proposal for a European Pharmacopoeia monograph concerning Indigo naturalis has recently been published, whereby the indigo (1) and indirubin (2) content should be determined by HPLC-UV. This method was tested, but problems were seen with the dosage of indigo due to poor solubility. A quantitative assay for indigo based on (1)H-NMR was developed as an alternative. The HPLC and qNMR assays were compared with eight Indigo naturalis samples. The HPLC assay consistently gave much lower indigo concentrations because solubility was the limiting factor in sample preparation. In one sample, sucrose was identified by (1)H-NMR as an organic additive. Simple wet chemistry assays for undeclared additives such as sugars and starch were tested with artificially spiked Indigo naturalis samples to establish their limits of detection, and sulfate ash determinations were carried out in view of a better assessment of Indigo naturalis in a future European monograph.
An HPLC method has been developed and validated for the quantification of the pharmacologically active principles tryptanthrin (1), 1,3-dihydro-3-[(4-hydroxy-3,5-dimethoxyphenyl)methylene]-2 H-indol-2-one (indolinone) (3), indirubin (4), alpha-linolenic acid (2), and indigo (5), an isomer of indirubin, in extracts from the traditional anti-inflammatory plant Isatis tinctoria (woad). The chromatographic separation was performed on a C-18 column with a linear gradient of acetonitrile in water containing 0.1% formic acid. The method combines UV and electrospray MS detection in the positive ion mode for the detection of the alkaloids, with a switch to the negative mode for the analysis of alpha-linolenic acid. The method was applied to the analysis of woad extracts obtained by supercritical fluid (SFE) CO2 extraction, and by pressurized liquid extraction (PLE) with dichloromethane and methanol, respectively. While the highest concentration of alpha-linolenic acid was found in the SFE extract (7.43%), the concentrations of tryptanthrin , indolinone, indirubin and indigo were the highest in the dichloromethane extract (0.30, 0.035, 2.48 and 0.84%, respectively). Compound 3 was not detected in the methanolic extract and only traces of compounds 1, 4 and 5 and low amount of alpha-linolenic acid (0.39%) were present in this extract.
The seasonal fluctuation of glucosinolates in five defined Isatis tinctoria and one Isatis indigotica accessions (first year, rosette stage), grown on field plots under identical conditions, was investigated. Analysis of the intact glucosinolates was carried out with shock frozen, freeze dried leaf samples using a recently developed and validated PLE (pressurized liquid extraction) protocol and ion-pair HPLC coupled with ESI-MS in the negative mode. When comparing the two Isatis species, significant qualitative and quantitative differences in the glucosinolate patterns were observed. Differences among the various Isatis tinctoria accessions were much smaller. We studied the effects of repeated harvesting during the growth season on glucosinolate concentrations and found that repeated harvest did not have a major effect on glucosinolate concentrations of newly grown leaves. Glucosinolates could not be detected in woad leaves submitted to conventional drying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.