Planktonic Foraminifera are important marine calcifiers, and the ongoing change in the oceanic carbon system makes it essential to understand the influence of environmental factors on the biomineralization of their shells. The amount of calcite deposited by planktonic Foraminifera during calcification has been hypothesized to reflect a range of environmental factors. However, it has never been assessed whether their calcification only passively responds to the conditions of the ambient seawater or whether it reflects changes in resource allocation due to physiological stress. To disentangle these two end-member scenarios, an experiment is required where the two processes are separated. A natural analogue to such an experiment occurred during the deposition of the Mediterranean sapropels, where large changes in surface water composition and stratification at the onset of the sapropel deposition were decoupled from local extinctions of planktonic Foraminifera species. We took advantage of this natural experiment and investigated the reaction of calcification intensity, expressed as mean area density (MAD), of four species of planktonic Foraminifera to changing conditions during the onset of Sapropel S5 (126–121 ka) in a sediment core from the Levantine Basin. We observed a significant relationship between MAD and surface water properties, as reflected by stable isotopes in the calcite of Foraminifera shells, but we failed to observe any reaction of calcification intensity on ecological stress during times of decreasing abundance culminating in local extinction. The reaction of calcification intensity to surface water perturbation at the onset of the sapropel was observed only in surface-dwelling species, but all species calcified more strongly prior to the sapropel deposition and less strongly within the sapropel than at similar conditions during the present-day. These results indicate that the high-salinity environment of the glacial Mediterranean Sea prior to sapropel deposition induced a more intense calcification, whereas the freshwater injection to the surface waters associated with sapropel deposition inhibited calcification. The results are robust to changes in carbonate preservation and collectively imply that changes in normalized shell weight in planktonic Foraminifera should reflect mainly abiotic forcing
Extinction is a remarkably difficult phenomenon to study under natural conditions. This is because the outcome of stress exposure and associated fitness reduction is not known until the extinction occurs and it remains unclear whether there is any phenotypic reaction of the exposed population that can be used to predict its fate. Here we take advantage of the fossil record, where the ecological outcome of stress exposure is known. Specifically, we analyze shell morphology of planktonic Foraminifera in sediment samples from the Mediterranean, during an interval preceding local extinctions. In two species representing different plankton habitats, we observe shifts in trait state and decrease in variance in association with non-terminal stress, indicating stabilizing selection. At terminal stress levels, immediately before extinction, we observe increased growth asymmetry and trait variance, indicating disruptive selection and bet-hedging. The pre-extinction populations of both species show a combination of trait states and trait variance distinct from all populations exposed to non-terminal levels of stress. This finding indicates that the phenotypic history of a population may allow the detection of threshold levels of stress, likely to lead to extinction. It is thus an alternative to population dynamics in studying and monitoring natural population ecology.
Planktonic Foraminifera are important marine calcifiers, and the ongoing change in the oceanic carbon system makes it essential to understand the influence of environmental factors on the biomineralisation of their shells. The amount of calcite deposited by planktonic Foraminifera during calcification has been hypothesized to reflect a range of environmental factors. However, it has never been assessed whether their calcification only passively responds to the conditions of the ambient seawater or whether it reflects changes in resource allocation due to physiological stress. To disentangle these two end-member scenarios, an experiment is required where the two processes are separated. A natural analogue to such an experiment occurred during the deposition of the Mediterranean sapropels, where large changes in surface water composition and stratification at the onset of the sapropel deposition were decoupled from local extinctions of planktonic Foraminifera species. We take advantage of this natural experiment and investigate the reaction of calcification intensity, expressed as size-normalized weight (SNW), of four species of planktonic Foraminifera to changing conditions during the onset of Sapropel S5 (126–121 ka) in a sediment core from the Levantine Basin. We observe a significant relationship between SNW and surface water properties, as reflected by stable isotopes in the calcite of Foraminifera shells, but we failed to observe any reaction of calcification intensity on ecological stress during times of decreasing abundance culminating in local extinction. The reaction of calcification intensity to surface water perturbation at the onset of the sapropel was observed only in surface dwelling species, but all species calcified more strongly prior to the sapropel deposition and less strongly within the sapropel than at comparable conditions during the present day. These results indicate that the high-salinity environment of the glacial Mediterranean Sea prior to sapropel deposition induced a more intense calcification, whereas the freshwater injection to the surface waters associated with sapropel deposition inhibited calcification. The results are robust to changes in carbonate preservation and collectively imply that changes in normalized shell weight in planktonic Foraminifera should reflect mainly abiotic forcing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.