We present a comprehensive toolkit for Förster resonance energy transfer (FRET)-restrained modeling of biomolecules and their complexes for quantitative applications in structural biology. A dramatic improvement in the precision of FRET-derived structures is achieved by explicitly considering spatial distributions of dye positions, which greatly reduces uncertainties due to flexible dye linkers. The precision and confidence levels of the models are calculated by rigorous error estimation. The accuracy of this approach is demonstrated by docking a DNA primer-template to HIV-1 reverse transcriptase. The derived model agrees with the known X-ray structure with an r.m.s. deviation of 0.5 Å. Furthermore, we introduce FRET-guided 'screening' of a large structural ensemble created by molecular dynamics simulations. We used this hybrid approach to determine the formerly unknown configuration of the flexible single-strand template overhang.
By using single-molecule multiparameter fluorescence detection, fluorescence resonance energy transfer experiments, and newly developed data analysis methods, this study demonstrates directly the existence of three structurally distinct forms of reverse transcriptase (RT):nucleic acid complexes in solution. Single-molecule multiparameter fluorescence detection also provides first information on the structure of a complex not observed by x-ray crystallography. This species did not incorporate nucleotides and is structurally distinct from the other two observed species. We determined that the nucleic acid substrate is bound at a site far removed from the nucleic acid-binding tract observed by crystallography. In contrast, the other two states are identified as being similar to the x-ray crystal structure and represent distinct enzymatically productive stages in DNA polymerization. These species differ by only a 5-Å shift in the position of the nucleic acid. Addition of nucleoside triphosphate or of inorganic pyrophosphate allowed us to assign them as the educt and product state in the polymerization reaction cycle; i.e., the educt state is a complex in which the nucleic acid is positioned to allow nucleotide incorporation. The second RT:nucleic acid complex is the product state, which is formed immediately after nucleotide incorporation, but before RT translates to the next nucleotide.H IV-1 reverse transcriptase (RT) is a key enzyme in the life cycle of HIV. This multifunctional enzyme is responsible for the complex process of transcribing viral RNA into doublestranded DNA for integration into the host cell genome. The enzyme is a heterodimer composed of subunits which share a common N terminus and have subdomains referred to as fingers, palm, thumb, and connection ( Fig. 1). Although the subdomains of each subunit are structurally similar, the overall folding within the two subunits is quite different (1). The large subunit, p66, contains RNA-and DNA-dependent DNA polymerase as well as RNase H activities. The p51 subunit, which is inactive in the heterodimer but active in homodimers (2, 3), is thought to play a role in stabilizing the conformation of p66.Crystallographic studies of RT:nucleic acid primer͞template (p͞t) complexes have provided valuable insights into the structural features and conformational changes induced by p͞t binding (1, 4-7). To date, these crystallographic models have indicated a single p͞t-binding mode. In contrast, recent solutionbased kinetic studies on p͞t binding and nucleotide incorporation by RT suggest a heterogeneous mixture of several different binding modes (8). To confirm directly the existence of several species, and to obtain structural and functional information about each, we have used single-molecule spectroscopy to investigate RT:p͞t complexes in solution.Single-molecule techniques have proven to be valuable tools for resolving static and dynamic heterogeneity of an ensemble (9-13). For this investigation, we use a newly developed multiparameter fluorescence detection (MF...
It has been proposed that p68, a nuclear protein of relative molecular mass 68,000, functions in the regulation of cell growth and division. A complementary DNA analysis of the protein has revealed extensive amino-acid sequence homology to the products of a set of genes recently identified in organisms as diverse as Escherichia coli and man, which include the eukaryotic translation initiation factor elF-4A. The protein products of the new gene family have several motifs in common which are thought to be involved in nucleic acid unwinding. As yet, however, only elF-4A, through its effect on RNA, has been shown to possess unwinding activity. Here we report that purified p68 also exhibits RNA-dependent ATPase activity and functions as an RNA helicase in vitro. The protein was first identified by its specific immunological cross reaction with the simian virus 40 large T antigen, the transforming protein of a small DNA tumour virus. Surprisingly, T antigen also has an RNA-unwinding activity: the homology between the two polypeptides, although confined to only a small region resembling the epitope of the cross-reacting antibody (PAb204), should therefore be of functional significance. Furthermore, the RNA-unwinding activity may be involved in the growth-regulating functions of both proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.