Biosecurity is defined as the implementation of measures that reduce the risk of disease agents being introduced and/or spread. For pig production, several of these measures are routinely implemented (e.g. cleaning, disinfection, segregation). However, air as a potential vector of pathogens has long been disregarded. Filters for incoming and recirculating air were installed into an already existing ventilation plant at a fattening piggery (3,840 pigs at maximum) in Saxony, Germany. Over a period of three consecutive fattening periods, we evaluated various parameters including air quality indices, environmental and operating parameters, and pig performance. Animal data regarding respiratory diseases, presence of antibodies against influenza A viruses, PRRSV, and Actinobacillus pleuropneumoniae and lung health score at slaughter were recorded, additionally. There were no significant differences (p = 0.824) in total bacterial counts between barns with and without air filtration. Recirculating air filtration resulted in the lowest total dust concentration (0.12 mg/m3) and lung health was best in animals from the barn equipped with recirculating air filtration modules. However, there was no difference in animal performance. Antibodies against all above mentioned pathogens were detected but mostly animals were already antibody-positive at re-stocking. We demonstrated that supply air filtration as well as recirculating air filtration technique can easily be implemented in an already existing ventilation system and that recirculating air filtration resulted in enhanced lung health compared to supply air-filtered and non-filtered barns. A more prominent effect might have been obtained in a breeding facility because of the longer life span of sows and a higher biosecurity level with air filtration as an add-on measure.
Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs.
High amounts of aerial pollutants like dust and microorganisms can pose serious health hazards to animals and humans. The aim of the current study therefore was, to assess the efficiency of UVC irradiation combined to air filtration in reducing airborne microorganisms at laboratory scale. In a second part, a UVC-combined recirculating air filtration module (UVC module) was implemented in a small animal facility in order to assess its improvement of air quality with regard to airborne bacteria and dust. Tests at laboratory scale were performed using aerosols of Staphylococcus (S.) aureus, Actinobacillus pleuropneumoniae, porcine parvovirus (PPV) and porcine reproductive and respiratory syndrome virus. We varied relative humidity (RH) to evaluate its effect on UVC irradiation efficiency. In addition, viability of pathogens inside the filter material was determined over up to six months. UVC-combined air filtration resulted in a more than 99% reduction of viral and bacterial particles. RH had no influence on UVC efficiency. Viability in the filter matter varied depending on the pathogen used and RH with S. aureus and PPV being most resistant. In our small pig facility consisting of two separated barns, weekly air measurements were conducted over a period of 13 weeks (10 piglets) and 16 weeks (11 piglets), respectively. Airborne bacterial numbers were significantly lower in the barn equipped with the UVC module compared to the reference barn. On average a reduction to 37% of reference values could be achieved for bacteria, whereas the amount of total dust was reduced to a much lesser extent (i.e. to 78% of reference values). Measures taken in front of and behind the UVC module revealed a reduction of 99.4% for airborne bacteria and 95.0% for total dust. To conclude, recirculating air filtration combined to UVC provided efficient reduction of pathogens at laboratory and experimental scale. The implementation of such devices might improve the overall environmental quality in animal facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.