Over the past decade, the most significant, conceptual advances in the field of fluorination were enabled most prominently by organo‐ and transition‐metal catalysis. The most challenging transformation remains the formation of the parent CF bond, primarily as a consequence of the high hydration energy of fluoride, strong metal—fluorine bonds, and highly polarized bonds to fluorine. Most fluorination reactions still lack generality, predictability, and cost‐efficiency. Despite all current limitations, modern fluorination methods have made fluorinated molecules more readily available than ever before and have begun to have an impact on research areas that do not require large amounts of material, such as drug discovery and positron emission tomography. This Review gives a brief summary of conventional fluorination reactions, including those reactions that introduce fluorinated functional groups, and focuses on modern developments in the field.
Preface
Recent advances in catalysis have made the incorporation of fluorine into complex organic molecules easier than ever before, but selective, general, and practical fluorination reactions remain sought after. Fluorination of molecules often imparts desirable properties such as metabolic and thermal stability, and fluorinated molecules are therefore frequently used as pharmaceuticals or materials. Even with the latest advances in chemistry, carbon–fluorine bond formation in complex molecules is still a significant challenge. Within the last few years, new reactions to make organofluorides have emerged and exemplify how to overcome some of the intricate challenges associated with fluorination.
The success of olefin metathesis has spurred the intense investigation of new catalysts for this transformation. With the development of many different catalysts, however, it becomes increasingly difficult to compare their efficiencies. In this article we introduce a set of six reactions with specific reaction conditions to establish a standard for catalyst comparison in olefin metathesis. The reactions were selected on the basis of their ability to provide a maximum amount of information describing catalyst activity, stability, and selectivity, while being operationally simple. Seven of the most widely used rutheniumbased olefin metathesis catalysts were evaluated with these standard screens. This standard is a useful tool for the comparison and evaluation of new metathesis catalysts.
A one-step oxidative fluorination for carbon–fluorine bond formation from well-defined nickel complexes with oxidant and aqueous fluoride is presented, which enables a straightforward and practical 18F late-stage fluorination of complex small molecules with potential for PET imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.