Recent years showed a boost in knowledge about the presence and fate of micropollutants in the environment. Instrumental and methodological developments mainly in liquid chromatography coupled to mass spectrometry hold a large share in this success story. These techniques soon complemented gas chromatography and enabled the analysis of more polar compounds including pesticides but also household chemicals, food additives, and pharmaceuticals often present as traces in surface waters. In parallel, sample preparation techniques evolved to extract and enrich these compounds from biota and water samples. This review article looks at very polar and ionic compounds using the criterion log P ≤ 1. Considering about 240 compounds, we show that (simulated) log D values are often even lower than the corresponding log P values due to ionization of the compounds at our reference pH of 7.4. High polarity and charge are still challenging characteristics in the analysis of micropollutants and these compounds are hardly covered in current monitoring strategies of water samples. The situation is even more challenging in biota analysis given the large number of matrix constituents with similar properties. Currently, a large number of sample preparation and separation approaches are developed to meet the challenges of the analysis of very polar and ionic compounds. In addition to reviewing them, we discuss some trends: for sample preparation, preconcentration and purification efforts by SPE will continue, possibly using upcoming mixed-mode stationary phases and mixed beds in order to increase comprehensiveness in monitoring applications. For biota analysis, miniaturization and parallelization are aspects of future research. For ionic or ionizable compounds, we see electromembrane extraction as a method of choice with a high potential to increase throughput by automation. For separation, predominantly coupled to mass spectrometry, hydrophilic interaction liquid chromatography applications will increase as the polarity range ideally complements reversed phase liquid chromatography, and instrumentation and expertise are available in most laboratories. Two-dimensional applications have not yet reached maturity in liquid-phase separations to be applied in higher throughput. Possibly, the development and commercial availability of mixed-mode stationary phases make 2D applications obsolete in semi-targeted applications. An interesting alternative will enter routine analysis soon: supercritical fluid chromatography demonstrated an impressive analyte coverage but also the possibility to tailor selectivity for targeted approaches. For ionic and ionizable micropollutants, ion chromatography and capillary electrophoresis are amenable but may be used only for specialized applications such as the analysis of halogenated acids when aspects like desalting and preconcentration are solved and the key advantages are fully elaborated by further research.
An alternative CE-(indirect ultraviolet) method for the analysis of inorganic and organic anions in ethylene glycol-based engine coolants is presented using a BGE with 4 mM pyromellitic acid and 3.4 mM 1,6-hexamethylene diamine, pH 3. Baseline separation of six inorganic (e.g. nitrite, nitrate, and sulfate) and five organic anions (e.g. acetic and glycolic acid) was achieved. Quantification of 8 out of 11 specified anions was possible in stressed engine coolant samples after simple aqueous dilution. LODs between 0.8 and 15.1 mg/L with RSD values of peak areas between 2.6 and 11.9% were obtained. Some limitations due to matrix effects can be overcome with slight adaptations of the BGE. The flexibility of the method is vital regarding the increasing demands for the composition of engine coolants for pollution reduction.
For the analysis of low concentrations of micropollutants in environmental water samples, efficient sample enrichment and cleanup are necessary to reduce matrix effects and to reach low detection limits. For analytes of low and medium polarity, solid-phase extraction is used, but robust methods for the preconcentration of highly polar or ionizable analytes are scarce. In this work, field-step electrophoresis (FSE) was developed as an environmental sample cleanup technique for ionizable micropollutants and ionic transformation products. The FSE electrolyte system preconcentrated 15 acidic model analytes (pKa from −2.2 to 9.1) present in aqueous samples in two fractions by factors of 5–10. Simultaneously, highly mobile matrix compounds were removed including inorganic ions such as sulfate and chloride. The fractions were either directly injected for downstream analysis by reversed-phase liquid chromatography (RPLC) or further processed by evaporative preconcentration with subsequent reconstitution in an organic solvent suitable for separation methods like hydrophilic interaction chromatography. The FSE/RPLC-MS method exhibited high quantitative precision with RSDs of 3–6%. The method was successfully applied to a spiked river water sample and its performance compared with common solid-phase extraction and evaporative concentration, demonstrating a high analyte coverage. FSE combined with non-target screening by RPLC-MS revealed a strong reduction in matrix load especially at low retention times. Seventeen compounds were identified in the FSE fractions sampled at the field step boundary by retention time, accurate mass, and mass fragments. Suspect screening by FSE/RPLC-MS was facilitated by FSE’s selectivity for anionic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.