Classical ratchet potentials, which alternate a driving potential with periodic random dissipative motion, can account for the operation of biological motors. We demonstrate the operation of a quantum ratchet, which differs from classical ratchets in that dissipative processes are absent within the observation time of the system (Hamiltonian regime). An atomic rubidium Bose-Einstein condensate is exposed to a sawtooth-like optical lattice potential, whose amplitude is periodically modulated in time. The ratchet transport arises from broken spatiotemporal symmetries of the driven potential, resulting in a desymmetrization of transporting eigenstates (Floquet states). The full quantum character of the ratchet transport was demonstrated by the measured atomic current oscillating around a nonzero stationary value at longer observation times, resonances occurring at positions determined by the photon recoil, and dependence of the transport current on the initial phase of the driving potential.
We demonstrate a scheme for the Fourier synthesis of periodic optical
potentials with asymmetric unit cells for atoms. In a proof of principle
experiment, an atomic Bose-Einstein condensate is exposed to either symmetric
or sawtooth-like asymmetric potentials by superimposing a conventional standing
wave potential of $\lambda/2$ spatial periodicity with a fourth-order lattice
potential of $\lambda/4$ periodicity. The high periodicity lattice is realized
using dispersive properties of multiphoton Raman transitions. Future
applications of the demonstrated scheme could range from the search for novel
quantum phases in unconventionally shaped lattice potentials up to
dissipationless atomic quantum ratchets.Comment: 4 figure
We report on experiments investigating quantum transport and band interferometry of an atomic Bose-Einstein condensate in an optical lattice with a two-band miniband structure, realized with a Fourier-synthesized optical lattice potential. Bloch-Zener oscillations, the coherent superposition of Bloch oscillations and Landau-Zener tunneling between the two bands, are observed. When the relative phase between paths in different bands is varied, an interference signal is observed, demonstrating the coherence of the dynamics in the miniband system. Measured fringe patterns of this Stückelberg interferometer allow us to interferometrically map out the band structure of the optical lattice over the full Brillouin zone.
A proof-of-principle experiment simulating effects predicted by relativistic wave equations with ultracold atoms in a bichromatic optical lattice that allows for a tailoring of the dispersion relation is reported. We observe the analog of Klein tunneling, the penetration of relativistic particles through a potential barrier without the exponential damping that is characteristic for nonrelativistic quantum tunneling. Both linear (relativistic) and quadratic (nonrelativistic) dispersion relations are investigated, and significant barrier transmission is observed only for the relativistic case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.