The increasing need to slow down climate change for environmental protection demands further advancements toward regenerative energy and sustainable mobility. While individual mobility applications are assumed to be satisfied with improving battery electric vehicles (BEVs), the growing sector of freight transport and heavy-duty applications requires alternative solutions to meet the requirements of long ranges and high payloads. Fuel cell hybrid electric vehicles (FCHEVs) emerge as a capable technology for high-energy applications. This technology comprises a fuel cell system (FCS) for energy supply combined with buffering energy storages, such as batteries or ultracapacitors. In this article, recent successful developments regarding FCHEVs in various heavyduty applications are presented. Subsequently, an overview of the FCHEV drivetrain, its main components, and different topologies with an emphasis on heavy-duty trucks is given. In order to enable system layout optimization and energy management strategy (EMS) design, functionality and modeling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.