Organic light-emitting diodes (OLEDs) have gained considerable attention because of their use of inherently flexible materials and their compatibility with facile roll-to-roll and printing processes. In addition to high efficiency, flexibility and transparency, reliable color tunability of solid state light sources is a desirable feature in the lighting and display industry. Here, we demonstrate a device concept for highly efficient organic light-emitting devices whose emission color can be easily adjusted from deep-blue through cold-white and warm-white to saturated yellow. Our approach exploits the different polarities of the positive and negative half-cycles of an alternating current (AC) driving signal to independently address a fluorescent blue emission unit and a phosphorescent yellow emission unit which are vertically stacked on top of each other. The electrode design is optimized for simple fabrication and driving and allows for two-terminal operation by a single source. The presented concept for color-tunable OLEDs is compatible with application requirements and versatile in terms of emitter combinations. INTRODUCTIONIn recent years, organic light-emitting diodes (OLEDs) have evolved into a mature technology and OLEDs are now used in various display applications. OLEDs provide an internal charge-to-photon conversion efficiency of nearly 100% and deliver homogeneous emission over large areas, making them promising candidates for new and innovative lighting applications. 1 White OLEDs, in particular, offer great potential for energy-efficient general illumination: luminous efficacies of more than 90 lm W 21 , comparable to the best fluorescent tubes, have already been reported. 2,3 Furthermore, OLED-based light sources can be made mechanically flexible and transparent, offering new opportunities for architecture, visual art and decoration. 4 The reliable realtime tunability of the OLED emission color would impart further momentum to OLED technology on its way to becoming a widespread source of general illumination. Thus far, two different color-tuning concepts have prevailed in the literature. One exploits voltagedependent changes in emission color and was demonstrated as early as 1994 for OLEDs fabricated from polymer blends. 5 Voltage-dependent color shifts are the result of a variety of mechanisms, e.g., voltagedependent charge trapping, a spatial shift of the recombination zone, a modified exciton distribution, or exciton quenching at high current densities. [5][6][7] However, this approach has several drawbacks: not only are the mechanisms that lead to voltage-dependent color-shifts difficult to control, but adjusting the driving voltage also unavoidably results in a dramatic and undesired change in device brightness. The second concept overcomes the disadvantages of the voltage-controlled approach by using a stacked tandem OLED structure with two (or more) independently addressable units emitting light of different colors. 8,9 In comparison with the first method, this approach provides
An ultra‐thin MoO3–Au–Ag wetting layer metal electrode is investigated to eliminate present optical and electrical limitations of inverted top‐emitting OLEDs. Its high transmittance suppresses microcavity effects and the MoO3 hole injection layer compensates limited charge injection from the top contact. Overall, an extensive approach is presented to solve the key problems of top‐emitting OLEDs in general.
Abstract:Bragg scattering at one-dimensional corrugated substrates allows to improve the light outcoupling from top-emitting organic light-emitting diodes (OLEDs). The OLEDs rely on a highly efficient phosphorescent pin stack and contain metal electrodes that introduce pronounced microcavity effects. A corrugated photoresist layer underneath the bottom electrode introduces light scattering. Compared to optically optimized reference OLEDs without the corrugated substrate, the corrugation increases light outcoupling efficiency but does not adversely affect the electrical properties of the devices. The external quantum efficiency (EQE) is increased from 15 % for an optimized planar layer structure to 17.5 % for a corrugated OLED with a grating period of 1.0 µm and a modulation depth of about 70 nm. Detailed analysis and optical modeling of the angular resolved emission spectra of the OLEDs provide evidence for Bragg scattering of waveguided and surface plasmon modes that are normally confined within the OLED stack into the air-cone. We observe constructive and destructive interference between these scattered modes and the radiative cavity mode. This interference is quantitatively described by a complex summation of Lorentz-like resonances.
In recent years, the organic light-emitting diode (OLED) technology has been a rapidly evolving field of research, successfully making the transition to commercial applications such as mobile phones and other small portable devices. OLEDs provide efficient generation of light, excellent color quality, and allow for innovative display designs, e.g., curved shapes, mechanically flexible and/or transparent devices. Especially their self emissive nature is a highly desirable feature for display applications. In this work, we demonstrate an approach for full-color OLED pixels that are fabricated by vertical stacking of a red-, green-, and blue-emitting unit. Each unit can be addressed separately which allows for efficient generation of every color that is accessible by superpositioning the spectra of the individual emission units. Here, we use a combination of time division multiplexing and pulse width modulation to achieve efficient color mixing. The presented device design requires only three independently addressable electrodes, simplifying both fabrication and electrical driving. The device is built in a top-emission geometry, which is highly desirable for display fabrication as the pixel can be directly deposited onto back-plane electronics. Despite the top-emission design and the application of three silver layers within the device, there is only a minor color shift even for large viewing angles. The color space spanned by the three emission sub-units exceeds the sRGB space, providing more saturated green/yellow/red colors. Furthermore, the electrical performance of each individual unit is on par with standard single emission unit OLEDs, showing very low leakage currents and achieving brightness levels above 1000 cd/m2 at moderate voltages of around 3–4 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.