This article describes tests investigating a feasible source of passive damping for post-tensioned glue-laminated (glulam) timber structures. This innovative structural system adapts precast concrete PRESSS technology [Priestley et al., 1999]
to engineered wood products combining the use of post-tensioned tendons with large timber members. Current testing is aimed at further improvement of the system through additional energy dissipation. Testing has favorably compared glue-laminated timber (not previously implemented in this way) with laminated veneer lumber (LVL) used in NewZealand. After initial benchmark testing with post-tensioning only, a simple, minimally invasive and replaceable type of hysteretic damper was added.
This paper presents an experimental study on dowelled connections in Cross-Laminated Timber (CLT) and Laminated Veneer Lumber (LVL) using ϕ20 mm mild steel dowels and internal steel plates. Connections designed to fail in brittle row shear and group tear-out were tested under monotonic loading to assess the validity of analytical models from literature and code provisions. Connections designed to provide non-linearity before failure and thus produce ductility were tested under both monotonic and cyclic loading to study the influence of cyclic loading on ductility and the possibility of mode cross-over. It was found that cross layers in CLT improve ductility. Furthermore, mode cross-over from ductile response to brittle failure was observed in both CLT and LVL connections. Nevertheless, a good amount of ductility was achieved in all layouts (except the LVL connections designed for group tear-out failure) before cross-over to brittle failure occurred.
A recently developed technology for the construction of multi-storey timber buildings called Pres-Lam uses long lengths of prefabricated laminated timber connected together using pre-stressing steel tendons or bars. A 3-dimensional, 3-storey, 2/3rd scaled Pres-Lam frame building was tested on the shaking table of the structural laboratory of the University of Basilicata. The main objectives of this study were: (1) to confirm the effectiveness of the Pres-Lam technology, originally developed using laminated veneer lumber, for glue laminated (Glulam) timber structures and (2) to validate the current modelling approach in predicting the dynamic response. This paper describes the design, detailing and construction of the experimental model followed by explanation of the testing programme. Two sessions of testing were performed considering different column-base conditions, both with and without the activation of externally mounted dissipative steel angles. The test results are compared with numerical predictions obtained through nonlinear analysis. These numerical models are shown to provide an accurate representation of the dynamic response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.