The dynamics of water are examined using ultrafast IR stimulated vibrational echo correlation spectroscopy. The OD hydroxyl stretch of HOD in H2O is probed with 45-fs pulses that have sufficient bandwidth (>400 cm-1) to span the entire broad spectrum. High-quality 2D correlation spectra are obtained having the correct phase relations across the broad hydroxyl band. The correlation spectra are found to evolve on multiple time scales. The time evolution of the vibrational echo correlation spectrum reflects the structural evolution of the hydrogen bond networks. The extended vibrational lifetime of the OD hydroxyl stretch of HOD in H2O facilitates the measurement of hydrogen bond dynamics for longer times than possible in previous studies of the OH stretch. Molecular dynamics simulations/electronic structure calculations are used to obtain the time correlation functions (TCF) for two water models, TIP4P and SPC/E. The TCFs are inputs to full time-dependent diagrammatic perturbation theory calculations, which yield theoretical correlation spectra. Quantitative comparison with the data demonstrates that the two water models somewhat overemphasize the fast fluctuations in water and do not contain a slow enough component to account for the slowest fluctuations. Fits to the data using a phenomenological triexponential TCF yield a slowest component of ∼2 ps, and TIP4P and SPC/E have slowest components of <1 ps. The TCF obtained from the water models and the triexponential TCF reproduce the linear absorption line shape equally well, but all miss to some extent the asymmetric “wing” on the low-energy side of the line. Therefore, the time dependence of the vibrational echo correlation spectra provides a good test for the TCF, but the absorption spectrum does not.
Vibrational echo correlation spectroscopy experiments on the OD stretch of dilute HOD in H(2)O are used to probe the structural dynamics of water. A method is demonstrated for combining correlation spectra taken with different infrared pulse bandwidths (pulse durations), making it possible to use data collected from many experiments in which the laser pulse properties are not identical. Accurate measurements of the OD stretch anharmonicity (162 cm(-1)) are presented and used in the data analysis. In addition, the recent accurate determination of the OD vibrational lifetime (1.45 ps) and the time scale for the production of vibrational relaxation induced broken hydrogen bond "photoproducts" ( approximately 2 ps) aid in the data analysis. The data are analyzed using time dependent diagrammatic perturbation theory to obtain the frequency time correlation function (FTCF). The results are an improved FTCF compared to that obtained previously with vibrational echo correlation spectroscopy. The experimental data and the experimentally determined FTCF are compared to calculations that employ a polarizable water model (SPC-FQ) to calculate the FTCF. The SPC-FQ derived FTCF is much closer to the experimental results than previously tested nonpolarizable water models which are also presented for comparison.
Ultrafast infrared transient absorption measurements of the complete hydroxyl OD stretching mode spectrum of HOD in water, from 100 fs to tens of picoseconds, observe hydrogen bond breaking and monitor the equilibration of the hydrogen bond network in water. In addition, the vibrational lifetime, the time constant for hydrogen bond breaking, and the rate of orientational relaxation are determined. The reactant and photoproduct spectra of the hydrogen bond breaking process are identified by decomposing the transient spectra into two components, the initial spectrum associated with vibrational excited states (reactants) and the long-time spectrum associated with broken hydrogen bonds (photoproducts). By properly taking into account the perturbation of the reactant spectrum decay by the growth of the photoproduct spectrum, it is found that the vibrational relaxation (1.45 ps) and orientational relaxation (1.53 ps) are wavelength independent and, therefore, independent of the degree of hydrogen bonding. Energy deposited into water by vibrational relaxation does not immediately break a hydrogen bond by predissociation nor produce a thermally equilibrated hydrogen bond distribution at an elevated temperature. Following deposition of energy by vibrational relaxation, the hydrogen bond breaking time is 800 fs, and there is a transient period of several picoseconds during which the hydrogen bond distribution is not in thermal equilibrium.
Hydrogen bond dynamics are explicated with exceptional detail using multidimensional infrared vibrational echo correlation spectroscopy with full phase information. Probing the hydroxyl stretch of methanol-OD oligomers in CCl4, the dynamics of the evolving hydrogen bonded network are measured with ultrashort (<50 fs) pulses. The data along with detailed model calculations demonstrate that vibrational relaxation leads to selective hydrogen bond breaking on the red side of the spectrum (strongest hydrogen bonds) and the production of singly hydrogen bonded photoproducts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.