Blood monocytes are heterogeneous effector cells of the innate immune system. In circulation these cells are constantly in contact with lipid-rich lipoproteins, yet this interaction is poorly characterised. Our aim was to examine the functional effect of hyperlipidaemia on blood monocytes. In the Ldlr−/− mouse monocytes rapidly accumulate cytoplasmic neutral lipid vesicles during hyperlipidaemia. Functional analysis in vivo revealed impaired monocyte chemotaxis towards peritonitis following high fat diet due to retention of monocytes in the greater omentum. In vitro assays using human monocytes confirmed neutral lipid vesicle accumulation after exposure to LDL or VLDL. Neutral lipid accumulation did not inhibit phagocytosis, endothelial adhesion, intravascular crawling and transmigration. However, lipid loading led to a migratory defect towards C5a and disruption of cytoskeletal rearrangement, including an inhibition of RHOA signaling. These data demonstrate distinct effects of hyperlipidaemia on the chemotaxis and cytoskeletal regulation of monocyte subpopulations. These data emphasise the functional consequences of blood monocyte lipid accumulation and reveal important implications for treating inflammation, infection and atherosclerosis in the context of dyslipidaemia.
In old world primates including humans, cone photoreceptors are classified according to their maximal sensitivity at either short (S, blue), middle (M, green) or long (L, red) wavelengths. Colour discrimination studies show that the S-cone pathway is selectively affected by age and disease, and psychophysical models implicate their loss. Photoreceptors have high metabolic demand and are susceptible to age or disease-related losses in oxygen and nutrient supply. Hence 30% of rods are lost over life. While comparable losses are not seen in cones, S-cones comprise less than 10% of the cone population, so significant loss would be undetected in total counts. Here we examine young and aged primate retinae stained to distinguish S from M/L-cones. We show there is no age-related cone loss in either cone type and that S-cones are as regularly distributed in old as young primates. We propose that S-cone metabolism is less flexible than in their M/L counterparts, making them more susceptible to deficits in normal cellular function. Hypoxia is a feature of the ageing retina as extracellular debris accumulates between photoreceptors and their blood supply which likely impacts S-cone function. However, that these cells remain in the ageing retina suggests the potential for functional restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.