Oncolytic Measles virus is a promising candidate for cancer treatment, but clinical studies have shown that extremely high doses (up to 10 11 TCID 50 per dose) are required to effect a cure. Very high titers of the virus must therefore be achieved during production to ensure an adequate supply. We have previously shown that Measles virus can be produced in Vero cells growing on a Cytodex 1 microcarrier in serum-containing medium using a stirred-tank reactor (STR). However, process optimization and further process transfer or scale up requires the identification of critical process parameters, particularly because the use of STRs increases the risk of cell damage and lower product yields due to shear stress. Using a small-scale STR (0.5 L working volume) we found that Measles virus titers are sensitive to agitator-dependent shear, with shear stress ≥0.25 N m −2 reducing the titer by more than four orders of magnitude. This effect was observed in both serum-containing and serum-free medium. At this scale, virus of titers up to 10 10 TCID 50 mL −1 could be achieved with an average shear stress of 0.1 N m −2 . We also found that the aeration method affected the virus titer. Aeration was necessary to ensure a sufficient oxygen supply to the Vero cells, and CO 2 was also needed to regulate the pH of the sodium bicarbonate buffer system. Continuous gassing with air and CO 2 reduced the virus titer by four orders of magnitude compared to head-space aeration. The manufacture of oncolytic Measles virus in a STR can therefore be defined as a shear-sensitive process, but high titers can nevertheless be achieved by keeping shear stress levels below 0.25 N m −2 and by avoiding extensive gassing of the medium.
Oncolytic viruses offer new hope to millions of patients with incurable cancer. One promising class of oncolytic viruses is Measles virus, but its broad administration to cancer patients is currently hampered by the inability to produce the large amounts of virus needed for treatment (10 -10 virus particles per dose). Measles virus is unstable, leading to very low virus titers during production. The time of infection and time of harvest are therefore critical parameters in a Measles virus production process, and their optimization requires an accurate online monitoring system. We integrated a probe based on dielectric spectroscopy (DS) into a stirred tank reactor to characterize the Measles virus production process in adherent growing Vero cells. We found that DS could be used to monitor cell adhesion on the microcarrier and that the optimal virus harvest time correlated with the global maximum permittivity signal. In 16 independent bioreactor runs, the maximum Measles virus titer was achieved approximately 40 hr after the permittivity maximum. Compared to an uncontrolled Measles virus production process, the integration of DS increased the maximum virus concentration by more than three orders of magnitude. This was sufficient to achieve an active Measles virus concentration of > 10 TCID ml .
The optimization of recombinant protein production in bacteria is an important stage of process development, especially for difficult-to-express proteins that are particularly sensitive or recalcitrant. The optimal expression level must be neither too low, which would limit yields, nor too high, which would promote the formation of insoluble inclusion bodies. Expression can be optimized by testing different combinations of elements such as ribosome binding sites and N-terminal affinity tags, but the rate of protein synthesis is strongly dependent on mRNA secondary structures so the combined effects of these elements must be taken into account. This substantially increases the complexity of high-throughput expression screening. To address this limitation, we generated libraries of constructs systematically combining different ribosome binding sites, N-terminal affinity tags, and periplasmic translocation sequences representing two secretion pathways. Each construct also contained a green fluorescent protein (GFP) tag to allow the identification of high producers and a thrombin cleavage site enabling the removal of fusion tags. To achieve proof of principle, we generated libraries of 200 different combinations of elements for the expression of an antimicrobial peptide (AMPs), an antifungal peptide, and the enzyme urate oxidase (uricase) in Escherichia coli and Vibrio natriegens. High producers for all three difficult-to-express products were enriched by fluorescence-activated cell sorting. Our results indicated that the E. coli ssYahJ secretion signal is recognized in V. natriegens and efficiently mediates translocation to the periplasm. Our combinatorial library approach therefore allows the cross-species direct selection of high-producer clones for difficult-to-express proteins by systematically evaluating the combined impact of multiple construct elements.
BackgroundAntimicrobial peptides (AMPs) are promising candidates for the development of novel antibiotics, but it is difficult to produce sufficient quantities for preclinical and clinical studies due to their toxicity towards microbial expression hosts. To avoid laborious trial-and-error testing for the identification of suitable expression constructs, we have developed a small-scale expression screening platform based on a combinatorial plasmid library.ResultsThe combinatorial library is based on the Golden Gate cloning system. In each reaction, six donor plasmids (each containing one component: a promoter, fusion partner 1, fusion partner 2, protease cleavage site, gene of interest, or transcriptional terminator) were combined with one acceptor plasmid to yield the final expression construct. As a proof of concept, screening was carried out in Escherichia coli and Pichia pastoris to study the expression of three different model AMPs with challenging characteristics, such as host toxicity or multiple disulfide bonds. The corresponding genes were successfully cloned in 27 E. coli and 18 P. pastoris expression plasmids, each in a one-step Golden Gate reaction. After transformation, small-scale expression screening in microtiter plates was followed by AMP quantification using a His6 tag-specific ELISA. Depending on the plasmid features and the expression host, the protein yields differed by more than an order of magnitude. This allowed the identification of high producers suitable for larger-scale protein expression.ConclusionsThe optimization of recombinant protein production is best achieved from first principles by initially optimizing the genetic construct. The unrestricted combination of multiple plasmid features yields a comprehensive library of expression strains that can be screened for optimal productivity. The availability of such a platform could benefit all laboratories working in the field of recombinant protein expression.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-017-0637-5) contains supplementary material, which is available to authorized users.
Antimicrobial proteins and peptides (AMPs) are valuable as leads in the pharmaceutical industry for the development of novel anti-infective drugs. Here we describe the efficient heterologous expression and basic characterization of a Gloverin-family AMP derived from the greater wax moth Galleria mellonella. Highly productive single-cell clones prepared by limiting dilution achieved a 100% increase in productivity compared to the original polyclonal Drosophila melanogaster S2 cell line. Comprehensive screening for suitable expression conditions using statistical experimental designs revealed that optimal induction was achieved using 600 µM CuSO at the mid-exponential growth phase. Under these conditions, 25 mg/L of the AMP was expressed at the 1-L bioreactor scale, with optimal induction and harvest times ensured by dielectric spectroscopy and the online measurement of optical density. Gloverin was purified from the supernatant by immobilized metal ion affinity chromatography followed by dialysis. In growth assays, the purified protein showed specific antimicrobial activity against two different strains of Escherichia coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.