In this work, we show that a recently proposed method for experimental nonlinear modal analysis based on the extended periodic motion concept is well suited to extract modal properties for strongly nonlinear systems (i.e. in the presence of large frequency shifts, high and nonlinear damping, changes of the mode shape, and higher harmonics). To this end, we design a new test rig that exhibits a large extent of friction-induced damping (modal damping ratio up to 15 %) and frequency shift by 36 %. The specimen, called RubBeR, is a cantilevered beam under the influence of dry friction, ranging from full stick to mainly sliding. With the specimen's design, the measurements are well repeatable for a system subjected to dry frictional force. Then, we apply the method to the specimen and show that singlepoint excitation is sufficient to track the modal properties even though the deflection shape changes with amplitude. Computed frequency responses using a single nonlinear-modal oscillator with the identified modal properties agree well with measured reference curves of different excitation levels, indicating the modal properties' significance and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.