Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.
To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies.
Hybrid breeding promises to boost yield and stability. The single most important element in implementing hybrid breeding is the recognition of a high-yielding heterotic pattern. We have developed a three-step strategy for identifying heterotic patterns for hybrid breeding comprising the following elements. First, the full hybrid performance matrix is compiled using genomic prediction. Second, a high-yielding heterotic pattern is searched based on a developed simulated annealing algorithm. Third, the long-term success of the identified heterotic pattern is assessed by estimating the usefulness, selection limit, and representativeness of the heterotic pattern with respect to a defined base population. This three-step approach was successfully implemented and evaluated using a phenotypic and genomic wheat dataset comprising 1,604 hybrids and their 135 parents. Integration of metabolomic-based prediction was not as powerful as genomic prediction. We show that hybrid wheat breeding based on the identified heterotic pattern can boost grain yield through the exploitation of heterosis and enhance recurrent selection gain. Our strategy represents a key step forward in hybrid breeding and is relevant for self-pollinating crops, which are currently shifting from pure-line to high-yielding and resilient hybrid varieties.hybrid breeding | genomic prediction | heterotic pattern
Postembryonic organ formation in higher plants relies on the activity of stem cell niches in shoot and root meristems where differentiation of the resident cells is repressed by signals from surrounding cells. We searched for mutations affecting stem cell maintenance and isolated the semidominant l28 mutant, which displays premature termination of the shoot meristem and differentiation of the stem cells. Allele competition experiments suggest that l28 is a dominant-negative allele of the APETALA2 (AP2) gene, which previously has been implicated in floral patterning and seed development. Expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) genes, which regulate stem cell maintenance in the wild type, were disrupted in l28 shoot apices from early stages on. Unlike in floral patterning, AP2 mRNA is active in the center of the shoot meristem and acts via a mechanism independent of AGAMOUS, which is a repressor of WUS and stem cell maintenance in the floral meristem. Genetic analysis shows that termination of the primary shoot meristem in l28 mutants requires an active CLV signaling pathway, indicating that AP2 functions in stem cell maintenance by modifying the WUS-CLV3 feedback loop.
BackgroundTriticale is adapted to a wide range of abiotic stress conditions, is an important high-quality feed stock and produces similar grain yield but more biomass compared to other crops. Modern genomic approaches aimed at enhancing breeding progress in cereals require high-quality genetic linkage maps. Consensus maps are genetic maps that are created by a joint analysis of the data from several segregating populations and different approaches are available for their construction. The phenomenon that alleles at a locus deviate from the Mendelian expectation has been defined as segregation distortion. The study of segregation distortion is of particular interest in doubled haploid (DH) populations due to the selection pressure exerted on the plants during the process of their establishment.ResultsThe final consensus map, constructed out of six segregating populations derived from nine parental lines, incorporated 2555 DArT markers mapped to 2602 loci (1929 unique). The map spanned 2309.9 cM with an average number of 123.9 loci per chromosome and an average marker density of one unique locus every 1.2 cM. The R genome showed the highest marker coverage followed by the B genome and the A genome. In general, locus order was well maintained between the consensus linkage map and the component maps. However, we observed several groups of loci for which the colinearity was slightly uneven. Among the 2602 loci mapped on the consensus map, 886 showed distorted segregation in at least one of the individual mapping populations. In several DH populations derived by androgenesis, we found chromosomes (2B, 3B, 1R, 2R, 4R and 7R) containing regions where markers exhibited a distorted segregation pattern. In addition, we observed evidence for segregation distortion between pairs of loci caused either by a predominance of parental or recombinant genotypes.ConclusionsWe have constructed a reliable, high-density DArT marker consensus genetic linkage map as a basis for genomic approaches in triticale research and breeding, for example for multiple-line cross QTL mapping experiments. The results of our study exemplify the tremendous impact of different DH production techniques on allele frequencies and segregation distortion covering whole chromosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.