Abstract-One of the major impediments to deploying partially run-time reconfigurable FPGAs as hardware accelerators is the time overhead involved in loading the hardware modules. While configuration prefetching is an effective method that can be employed to reduce this overhead, mispredicted prefetches may worsen the situation by increasing the number of reconfigurations needed. In this paper, we present a static algorithm for configuration prefetching in partially reconfigurable FPGAs that minimizes the reconfiguration overhead. By making use of profiling, the interprocedural control flow graph, and the placement information of hardware modules, our algorithm predicts hardware execution and tries to prefetch hardware modules as early as possible while minimizing the risk of mis-predictions. Our experiments show that our algorithm performs significantly better than current-state-ofthe-art prefetching algorthms for control-bound applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.