In this article, we present the design of a powered knee-ankle prosthetic leg, which implements high-torque actuators with low-reduction transmissions. The transmission coupled with a high-torque and low-speed motor creates an actuator with low mechanical impedance and high backdrivability. This style of actuation presents several possible benefits over modern actuation styles in emerging robotic prosthetic legs, which include free-swinging knee motion, compliance with the ground, negligible unmodeled actuator dynamics, less acoustic noise, and power regeneration. Benchtop tests establish that both joints can be backdriven by small torques (∼1-3 N•m) and confirm the small reflected inertia. Impedance control tests prove that the intrinsic impedance and unmodeled dynamics of the actuator are sufficiently small to control joint impedance without torque feedback or lengthy tuning trials. Walking experiments validate performance under the designed loading conditions with minimal tuning. Finally, the regenerative abilities, low friction, and small reflected inertia of the presented actuators reduced power consumption and acoustic noise compared to state-of-the-art powered legs.
This paper presents the mechatronic design and experimental validation of a novel powered knee-ankle orthosis for testing torque-driven rehabilitation control strategies. The modular actuator of the orthosis is designed with a torque dense motor and a custom low-ratio transmission (24:1) to provide mechanical transparency to the user, allowing them to actively contribute to their joint kinematics during gait training. The 4.88 kg orthosis utilizes frameless components and light materials, such as aluminum alloy and carbon fiber, to reduce its mass. A human subject experiment demonstrates accurate torque control with high output torque during stance and low backdrive torque during swing at fast walking speeds. This work shows that backdrivability, precise torque control, high torque output, and light weight can be achieved in a powered orthosis without the high cost and complexity of variable transmissions, clutches, and/or series elastic components.
This paper describes the design of a powered knee- and-ankle transfemoral prosthetic leg, which implements high torque density actuators with low-reduction transmissions. The low reduction of the transmission coupled with a high-torque and low-speed motor creates an actuator with low mechanical impedance and high backdrivability. This style of actuation presents several possible benefits over modern actuation styles implemented in emerging robotic prosthetic legs. Such benefits include free-swinging knee motion, compliance with the ground, negligible unmodeled actuator dynamics, and greater potential for power regeneration. Benchtop validation experiments were conducted to verify some of these benefits. Backdrive and free-swinging knee tests confirm that both joints can be backdriven by small torques (~3 Nm). Bandwidth tests reveal that the actuator is capable of achieving frequencies required for walking and running. Lastly, open-loop impedance control tests prove that the intrinsic impedance and unmodeled dynamics of the actuator are sufficiently small to control joint impedance without torque feedback.
Traditional control methodologies of rehabilitation orthoses/exoskeletons aim at replicating normal kinematics and thus fall into the category of kinematic control. This control paradigm depends on pre-defined reference trajectories, which can be difficult to adjust between different locomotor tasks and human subjects. An alternative control category, kinetic control, enforces kinetic goals (e.g., torques or energy) instead of kinematic trajectories, which could provide a flexible learning environment for the user while freeing up therapists to make corrections. We propose that the theory of underactuated potential energy shaping, which falls into the category of kinetic control, could be used to generate virtual body-weight support for stroke gait rehabilitation. After deriving the nonlinear control law and simulating it on a human-like biped model, we implemented this controller on a powered ankle-foot orthosis that was designed specifically for testing torque control strategies. Experimental results with an able-bodied human subject demonstrate the feasibility of the control approach for both positive and negative virtual body-weight augmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.