SummaryPopulations of the White-rumped Vulture Gyps bengalensis, Indian Vulture G. indicus and Slender-billed Vulture G. tenuirostris declined rapidly during the mid-1990s all over their ranges in the Indian subcontinent because of poisoning due to veterinary use of the non-steroidal anti-inflammatory drug diclofenac. This paper reports results from the latest in a series of road transect surveys conducted across northern, central, western and north-eastern India since the early 1990s. Results from the seven comparable surveys now available were analysed to estimate recent population trends. Populations of all three species of vulture remained at a low level. The previously rapid decline of White-rumped Vulture has slowed and may have reversed since the ban on veterinary use of diclofenac in India in 2006. A few thousand of this species, possibly up to the low tens of thousands, remained in India in 2015. The population of Indian Vulture continued to decline, though probably at a much slower rate than in the 1990s. This remains the most numerous of the three species in India with about 12,000 individuals in 2015 and a confidence interval ranging from a few thousands to a few tens of thousands. The trend in the rarest species, Slender-billed Vulture, which probably numbers not much more than 1,000 individuals in India, cannot be determined reliably.
Veterinary use of the non-steroidal anti-inflammatory drug diclofenac on domesticated ungulates caused populations of resident Gyps vultures in the Indian sub-continent to collapse. The birds died when they fed on carrion from treated animals. Veterinary diclofenac was banned in 2006 and meloxicam was advocated as a ‘vulture-safe’ alternative. We examine the effectiveness of the 2006 ban, whether meloxicam has replaced diclofenac, and the impact of these changes on vultures. Drug residue data from liver samples collected from ungulate carcasses in India since 2004 demonstrate that the prevalence of diclofenac in carcasses in 2009 was half of that before the ban and meloxicam prevalence increased by 44%. The expected vulture death rate from diclofenac per meal in 2009 was one-third of that before the ban. Surveys at veterinary clinics show that diclofenac use in India began in 1994, coinciding with the onset of rapid Gyps declines ascertained from measured rates of declines. Our study shows that one pharmaceutical product has had a devastating impact on Asia's vultures. Large-scale research and survey were needed to detect, diagnose and quantify the problem and measure the response to remedial actions. Given these difficulties, other effects of pharmaceuticals in the environment may remain undetected.
The collapse of South Asia's Gyps vulture populations is attributable to the veterinary use of the non-steroidal anti-inflammatory drug (NSAID) diclofenac. Vultures died after feeding on carcasses of recently-medicated animals. The governments of India, Nepal and Pakistan banned the veterinary use of diclofenac in 2006. We analysed results of 62 necropsies and 48 NSAID assays of liver and/or kidney for vultures of five species found dead in India between 2000 and 2012. Visceral gout and diclofenac were detected in vultures from nine states and three species: Gyps bengalensis, Gyps indicus and Gyps himalayensis. Visceral gout was found in every vulture carcass in which a measurable level of diclofenac was detected. Meloxicam, an NSAID of low toxicity to vultures, was found in two vultures and nimesulide in five vultures. Nimesulide at elevated tissue concentrations was associated with visceral gout in four of these cases, always without diclofenac, suggesting that nimesulide may have similar toxic effects to those of diclofenac. Residues of meloxicam on its own were never associated with visceral gout. The proportion of Gyps vultures found dead in the wild in India with measurable levels of diclofenac in their tissues showed a modest and non-significant decline since the ban on the veterinary use of diclofenac. The prevalence of visceral gout declined less, probably because some cases of visceral gout from 2008 onwards were associated with nimesulide rather than diclofenac. Veterinary use of nimesulide is a potential threat to the recovery of vulture populations.
SummaryThree Critically Endangered Gyps vultures endemic to South Asia continue to decline due to the use of diclofenac to treat livestock. High nephrotoxicity of diclofenac to Gyps vultures, leading to death, has been established by experiment and observation, in four out of five Gyps vulture species which occur in South Asia. Declines have also been observed in South Asia’s four other non-Gyps vulture species, but to date there has been no evidence about the importance of diclofenac as a potential cause. Neither is there any evidence on the toxicity of diclofenac to the Accipitridae other than vultures. In this study, gross and microscopic lesions and diclofenac tissue levels in Steppe Eagles Aquila nipalensis found at a cattle carcass dump in Rajasthan, India, show evidence of the toxicity of diclofenac for this species. These findings suggest the possibility that diclofenac is toxic to other accipitrid raptors and is therefore a potential threat to much wider range of scavenging species in South Asia.
Parasites induce phenotypic modifications in their hosts, which can compromise host fitness. For example, the parasitic fly Philornis downsi, which was recently introduced to the Galápagos Islands, causes severe naris and beak malformation in Darwin's finches. The fly larvae feed on tissues from the nares of developing finch nestlings, thereby altering the size and shape of the nares and beak. Although the parasitism is age-specific (adult finches are not parasitized), naris and beak malformations persist into adulthood as parasite-induced malformations. We systematically examined adult populations of Darwin's small ground finch, Geospiza fuliginosa, on the islands of Santa Cruz for P. downsi-induced malformation. We found that malformed birds had significantly longer nares, and shorter, shallower beaks, than birds considered to be normal (i.e. with no nares or beak malformation). In addition, normal birds showed an isometry between naris length and beak dimensions (beak length feather and beak depth), which was not found in malformed birds. These differences suggest that beak morphology was influenced by P. downsi parasitism. Interestingly, we did not find any evidence of developmental impairment (smaller body size) or reduced foraging efficiency (lower body condition) between normal and malformed birds. Our findings of P. downsi-induced malformation raise new questions about the evolutionary trajectory and conservation status for this group of birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.