To estimate the emissions of anthropogenic semivolatile organic compounds (SOCs) from East Asia and to identify unique SOC molecular markers in Asian air masses, high-volume air samples were collected on the island of Okinawa, Japan between 22 March and 2 May 2004. Contributions from different source regions (China, Japan, the Koreas, Russia, and ocean/local) were estimated by use of source region impact factors (SRIFs). Elevated concentrations of hexachlorobenzene (HCB), hexachlorcyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and particulate-phase polycyclic aromatic hydrocarbons (PAHs) were attributed to air masses from China. A large proportion of the variation in the current-use pesticides, gas-phase PAHs, and polychlorinated biphenyl (PCB) concentrations was explained by meteorology. Chlordanes showed a technical mixture profile and similar concentrations regardless of source region. alpha/gamma HCH and trans/cis chlordane ratios did not vary significantly with different source regions and had regional averages of 2.5 +/- 1.0 and 1.2 +/- 0.3, respectively. Particulate-phase PAH concentrations were significantly correlated (p value < 0.05) with other incomplete combustion byproduct concentrations, including elemental mercury (Hg0), CO, NOx, black carbon, submicrometer aerosols, and SO2. By use of measured PAH, CO, and black carbon concentrations and estimated CO and black carbon emission inventories, the emission of six carcinogenic particulate-phase PAHs was estimated to be 1518-4179 metric tons/year for Asia and 778-1728 metric tons/year for China, respectively. These results confirm that East Asian outflow contains significant emissions of carcinogenic particulate-phase PAHs.
Atmospheric measurements of semivolatile organic compounds (SOCs) were made at Mt. Bachelor Observatory (MBO), located in Oregon’s Cascade Range, to understand the trans-Pacific and regional transport of SOCs from urban areas. High volume air sampling (~644 m3 for 24 hour periods) of both the gas and particulate phases was conducted from the 19th of April 2004 to the 13th of May 2006 (n=69); including NASA’s INTEX-B campaign in spring 2006 (n= 34 of 69). Air mass back trajectories were calculated and used to calculate source region impact factors (SRIFs), the percentage of time the sampled air mass resided in a given source region. Particulate-phase polycyclic aromatic hydrocarbon (PAH) concentrations at MBO increased with the percentage of air mass time in Asia and, in conjunction with other data, provided strong evidence that particulate-phase PAHs are emitted from Asia and undergo trans-Pacific atmospheric transport to North America. Gas-phase PAH and fluorotelomer alcohol (FTOH) concentrations significantly increased with the percentage of air mass time in California’s urban areas, while retene and polychlorinated biphenyl (PCB) concentrations increased with the percentage of air mass time in Oregon and during regional fire events. In addition, Σgas-phase PAH, retene, and levoglucosan concentrations were significantly correlated (p-value < 0.001) with ΣPCB concentrations, suggesting increased atmospheric PCB concentrations were associated with fires due to the volatilization of stored PCBs from soil and vegetation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.