Questions persist about interpreting isotope ratios of bound and mobile soil water pools, particularly relative to clay content and extraction conditions. Interactions between pools and resulting extracted water isotope composition are presumably related to soil texture, yet few studies have manipulated the bound pool to understand its influence on soil water processes. Using a series of drying and spiking experiments, we effectively labelled bound and mobile water pools in soils with varying clay content. Soils were first vacuum dried to remove residual water, which was then replaced with heavy isotope-enriched water prior to oven drying and spiking with heavy isotope-depleted water. Water was extracted via centrifugation or cryogenic vacuum distillation (at four temperatures) and analysed for oxygen and hydrogen isotope ratios via isotope ratio mass spectrometry. Water from centrifuged samples fell along a mixing line between the two added waters but was more enriched in heavy isotopes than the depleted label, demonstrating that despite oven drying, a residual pool remains and mixes with the mobile water. Soils with higher clay + silt content appeared to have a larger bound pool. Water from vacuum distillation samples have a significant temperature effect, with high temperature extractions yielding progressively more heavy isotope-enriched values, suggesting that Rayleigh fractionation occurred at low temperatures in the vacuum line. By distinctly labelling bound and mobile soil water pools, we detected interactions between the two that were dependent on soil texture. Although neither extraction method appeared to completely extract the combined bound and mobile (total water) pool, centrifugation and high temperature cryogenic vacuum distillations were comparable for both δ 2 H and δ 18 O of soil water isotope ratios. K E Y W O R D Sclay mineralogy, extraction, methods, soil texture, soil water, stable isotopes, two water world hypothesis
The scientific enterprise reflects society at large, and as such it actively disadvantages minority groups. From an ethical perspective, this system is unacceptable as it actively undermines principles of justice and social good, as well as the research principles of openness and public responsibility. Further, minority social scientists lead to better overall scientific products, meaning a diverse scientific body can also be considered an instrumental good. Thus, centering minority voices in science is an ethical imperative. This paper outlines what can be done to actively center these scientists, including changing the way metrics are used to assess the performance of individual scientists and altering the reward structure within academic science to promote heterogenous research groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.