Recognition of peptide antigen by T cells involves coordinated movement of T cell receptors (TCRs) along with other costimulatory and signaling molecules. The spatially organized configurations that result are collectively referred to as the immunological synapse. Experimental investigation of the role of spatial organization in TCR signaling has been facilitated by the use of nanopatterned-supported membranes to direct TCR into alternative patterns. Here we study the mechanism by which substrate structures redirect TCR transport. Using a flow-tracking algorithm, the ensemble of TCR clusters within each cell was tracked during synapse formation under various constraint geometries. Shortly after initial cluster formation, a coordinated centripetal flow of approximately 20 nm/s develops. Clusters that encounter substrate-imposed constraint are deflected and move parallel to the constraint at speeds that scale with the relative angle of motion to the preferred centripetal direction. TCR transport is driven by actin polymerization, and the distribution of F-actin was imaged at various time points during the synapse formation process. At early time points, there is no significant effect on actin distribution produced by substrate constraints. At later time points, modest differences were observed. These data are consistent with a frictional model of TCR coupling to cytoskeletal flow, which allows slip. Implications of this model regarding spatial sorting of cell-surface molecules are discussed.
Supported planar bilayers have been used in immunology research for over 25 years, including in the initial demonstrations of MHC-peptide complex functional activity and adhesion molecule activity. More recent modifications of the method have been used to measure two-dimensional affinities and to study the formation of the immunological synapse. This unit covers the incorporation of glycolipid-anchored membrane proteins, 6-histidine-tagged soluble proteins, and monobiotinylated soluble proteins into supported planar bilayers. Reagents developed for the MHC-peptide tetramer staining method (UNIT 17.3) can readily be adapted to presentation on planar bilayers. The unique advantage of this approach is that the proteins presented on the surface of the supported bilayer are laterally mobile. This provides a more physiological presentation of cell-surface molecules and supports visualization of protein rearrangement on the bilayer by live cells.
Human immunodeficiency virus type 1 (HIV-1)-infected T cells form a virological synapse with noninfected CD4؉ T cells in order to efficiently transfer HIV-1 virions from cell to cell. The virological synapse is a specialized cellular junction that is similar in some respects to the immunological synapse involved in T-cell activation and effector functions mediated by the T-cell antigen receptor. The immunological synapse stops T-cell migration to allow a sustained interaction between T-cells and antigen-presenting cells. Here, we have asked whether HIV-1 envelope gp120 presented on a surface to mimic an HIV-1-infected cell also delivers a stop signal and if this is sufficient to induce a virological synapse. We demonstrate that HIV-1 gp120-presenting surfaces arrested the migration of primary activated CD4 T cells that occurs spontaneously in the presence of ICAM-1 and induced the formation of a virological synapse, which was characterized by segregated supramolecular structures with a central cluster of envelope surrounded by a ring of ICAM-1. The virological synapse was formed transiently, with the initiation of migration within 30 min. Thus, HIV-1 gp120-presenting surfaces induce a transient stop signal and supramolecular segregation in noninfected CD4 ؉ T cells.
The relationship between intermembrane spacing, adhesion efficiency, and lateral organization of adhesion receptors has not been established for any adhesion system. We have utilized the CD2 ligand CD48 with two (wild type CD48 (CD48-WT)), four (CD48-CD2), or five (CD48-CD22) Ig-like domains. CD48-WT was 10-fold more efficient in mediating adhesion than CD48-CD2 or CD48-CD22. Electron tomography of contact areas with planar bilayers demonstrated average intermembrane spacing of 12.8 nm with CD48-WT, 14.7 nm with CD48-CD2, and 15.6 nm with CD48-CD22. Both CD48-CD2 and CD48-CD22 chimeras segregated completely from CD48-WT in mixed contact areas. In contrast, CD48-CD2 and CD48-CD22 co-localized when mixed contacts were formed. Confocal imaging of immunological synapses formed between primary T lymphocytes and Chinese hamster ovary cells presenting major histocompatibility complex-peptide complexes, and different forms of CD48 demonstrated that CD48-CD2 and CD48-CD22 induce an eccentric CD2/T cell antigen receptor cluster. We propose that this reorganization of the immunological synapse sequesters the T cell antigen receptor in a location where it cannot interact with its ligand and dramatically reduces T cell sensitivity.
The immunological synapse is a specialized intercellular junction between a T cell and a target cell that orchestrates the engagement of receptors and ligands in space and time as a means of regulating function. Here we introduce a reagent for controlling the spatial and temporal presentation of natural antigen to T cells. Moth cytochrome c (88-103) peptide (MCC), an agonist to the murine T cell receptor AND when presented in the context of H2 IEk major histocompatibility complex (IEk), was synthesized with the side-chain amine of Lys99 conjugated to a photosensitive protecting group, 6-nitroveratryloxycarbonyl (NVOC). Cells plated on supported bilayers displaying mobile intercellular adhesion molecule-1 (ICAM-1) and NVOC-MCC loaded IEk did not form immunological synapses and exhibited low intracellular calcium levels, similar to cells presented with self-peptide. Irradiation with UV light was sufficient to restore agonist activity in situ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.